Skip to content

H3Pandas module

H3Pandas

Source code in vgridpandas\h3pandas\h3pandas.py
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
@pd.api.extensions.register_dataframe_accessor("h3")
class H3Pandas:
    def __init__(self, df: DataFrame):
        self._df = df

    # H3 API
    # These methods simply mirror the H3 API and apply H3 functions to all rows

    def latlon2h3(
        self,
        resolution: int,
        lat_col: str = "lat",
        lng_col: str = "lon",
        set_index: bool = True,
    ) -> AnyDataFrame:
        """Adds H3 index to (Geo)DataFrame.

        pd.DataFrame: uses `lat_col` and `lng_col` (default `lat` and `lon`)
        gpd.GeoDataFrame: uses `geometry`

        Assumes coordinates in epsg=4326.

        Parameters
        ----------
        resolution : int
            H3 resolution
        lat_col : str
            Name of the latitude column (if used), default 'lat'
        lng_col : str
            Name of the longitude column (if used), default 'lon'
        set_index : bool
            If True, the columns with H3 ID is set as index, default 'True'

        Returns
        -------
        (Geo)DataFrame with H3 ID added

        See Also
        --------
        geo_to_h3_aggregate : Extended API method that aggregates points by H3 id

        Examples
        --------
        >>> df = pd.DataFrame({'lat': [50, 51], 'lng':[14, 15]})
        >>> df.h3.geo_to_h3(8)
                         lat  lng
        h3
        881e309739fffff   50   14
        881e2659c3fffff   51   15

        >>> df.h3.geo_to_h3(8, set_index=False)
           lat  lng            h3
        0   50   14  881e309739fffff
        1   51   15  881e2659c3fffff

        >>> gdf = gpd.GeoDataFrame({'val': [5, 1]},
        >>> geometry=gpd.points_from_xy(x=[14, 15], y=(50, 51)))
        >>> gdf.h3.geo_to_h3(8)
                         val                   geometry
        h3
        881e309739fffff    5  POINT (14.00000 50.00000)
        881e2659c3fffff    1  POINT (15.00000 51.00000)

        """
        if not isinstance(resolution, int) or resolution not in range(0, 16):
            raise ValueError("Resolution must be an integer in range [0, 15]")

        if isinstance(self._df, gpd.GeoDataFrame):
            lngs = self._df.geometry.x
            lats = self._df.geometry.y
        else:
            lngs = self._df[lng_col]
            lats = self._df[lat_col]

        h3_id = [
            h3.latlng_to_cell(lat, lng, resolution) for lat, lng in zip(lats, lngs)
        ]

        # h3_column = self._format_resolution(resolution)
        h3_column = "h3"
        assign_arg = {h3_column: h3_id, "h3_res": resolution}   
        df = self._df.assign(**assign_arg)
        if set_index:
            return df.set_index(h3_column)
        return df

    def h32latlon(self) -> GeoDataFrame:
        """Add `geometry` with centroid of each H3 id to the DataFrame.
        Assumes H3 index.

        Returns
        -------
        GeoDataFrame with Point geometry

        Raises
        ------
        ValueError
            When an invalid H3 id is encountered

        See Also
        --------
        h3_to_geo_boundary : Adds a hexagonal cell

        Examples
        --------
        >>> df = pd.DataFrame({'val': [5, 1]},
        >>>                   index=['881e309739fffff', '881e2659c3fffff'])
        >>> df.h3.h3_to_geo()
                         val                   geometry
        881e309739fffff    5  POINT (14.00037 50.00055)
        881e2659c3fffff    1  POINT (14.99715 51.00252)

        """
        return self._apply_index_assign(
            h3.cell_to_latlng,
            "geometry",
            lambda x: _switch_lat_lng(shapely.geometry.Point(x)),
            lambda x: gpd.GeoDataFrame(x, crs="epsg:4326"),
        )

    def h32geo(self, h3_column: str = None) -> GeoDataFrame:
        """Add geometry with H3 geometry to the DataFrame. Assumes H3 token.

        Parameters
        ----------
        h3_column : str, optional
            Name of the column containing H3 tokens. If None, assumes H3 tokens are in the index.

        Returns
        -------
        GeoDataFrame with H3 geometry

        Raises
        ------
        ValueError
            When an invalid H3 token is encountered

        Examples
        --------
        >>> df = pd.DataFrame({'val': [5, 1]},
        >>>                   index=['881e309739fffff', '881e2659c3fffff'])
        >>> df.h3.h32geo()
                         val                                           geometry
        881e309739fffff    5  POLYGON ((13.99527 50.00368, 13.99310 49.99929...
        881e2659c3fffff    1  POLYGON ((14.99201 51.00565, 14.98973 51.00133...
        """

        if h3_column is not None:
            # H3 tokens are in the specified column
            if h3_column not in self._df.columns:
                raise ValueError(f"Column '{h3_column}' not found in DataFrame")
            h3_tokens = self._df[h3_column]

            # Handle both single tokens and lists of tokens
            geometries = []
            for tokens in h3_tokens:
                try:
                    if pd.isna(tokens):
                        # Handle NaN values - create empty geometry
                        geometries.append(Polygon())
                    elif isinstance(tokens, list):
                        # Handle list of tokens - create a MultiPolygon
                        if len(tokens) == 0:
                            # Handle empty list - create empty geometry
                            geometries.append(Polygon())
                        else:
                            cell_geometries = [cell_to_boundary_lng_lat(token) for token in tokens]
                            geometries.append(MultiPolygon(cell_geometries))
                    else:
                        # Handle single token
                        geometries.append(cell_to_boundary_lng_lat(tokens))
                except (ValueError, TypeError):
                    if isinstance(tokens, list):
                        if len(tokens) == 0:
                            geometries.append(Polygon())
                        else:
                            cell_geometries = [cell_to_boundary_lng_lat(token) for token in tokens]
                            geometries.append(MultiPolygon(cell_geometries))
                    else:
                        # Try to handle as single token
                        try:
                            geometries.append(cell_to_boundary_lng_lat(tokens))
                        except Exception:
                            # If all else fails, create empty geometry
                            geometries.append(Polygon())

            result_df = self._df.copy()
            result_df['geometry'] = geometries
            return gpd.GeoDataFrame(result_df, crs="epsg:4326")

        else:
            # H3 tokens are in the index
            return self._apply_index_assign(
                wrapped_partial(cell_to_boundary_lng_lat),
                "geometry",
                finalizer=lambda x: gpd.GeoDataFrame(x, crs="epsg:4326"),
            )

    def h3bin(
        self,
        resolution: int,
        stats: str = "count",
        numeric_column: str = None,
        category_column: str = None,
        lat_col: str = "lat",
        lon_col: str = "lon",
        return_geometry: bool = True,
    ) -> DataFrame:
        """
        Bin points into H3 cells and compute statistics, optionally grouped by a category column.

        Supports both GeoDataFrame (with point geometry) and DataFrame (with lat/lon columns).

        Parameters
        ----------
        resolution : int
            H3 resolution
        stats : str
            Statistic to compute: count, sum, min, max, mean, median, std, var, range, minority, majority, variety
        numeric_column : str, optional
            Name of the numeric column to aggregate (for sum, min, max, etc.) or the value column for minority/majority/variety stats
        category_column : str, optional
            Name of the category column to group by. Required for minority, majority, and variety stats when grouping by category.
        lat_col : str, optional
            Name of the latitude column (only used for DataFrame input, ignored for GeoDataFrame)
        lon_col : str, optional
            Name of the longitude column (only used for DataFrame input, ignored for GeoDataFrame)
        return_geometry : bool
            If True, return a GeoDataFrame with H3 cell geometry
        """
        # Validate inputs and prepare data
        # h3_column = self._format_resolution(resolution)
        h3_column = "h3"
        df = self.latlon2h3(resolution, lat_col, lon_col, False)

        # Validate column existence
        if category_column is not None and category_column not in df.columns:
            raise ValueError(f"Category column '{category_column}' not found in DataFrame")
        if numeric_column is not None and numeric_column not in df.columns:
            raise ValueError(f"Numeric column '{numeric_column}' not found in DataFrame")

        # Prepare grouping columns
        group_cols = [h3_column]
        if category_column:
            df[category_column] = df[category_column].fillna("NaN_category")
            group_cols.append(category_column)

        # Perform aggregation based on stats type
        if stats == "count":
            result = df.groupby(group_cols).size().reset_index(name=stats)

        elif stats in ["sum", "min", "max", "mean", "median", "std", "var"]:
            if not numeric_column:
                raise ValueError(f"numeric_column must be provided for stats='{stats}'")
            result = df.groupby(group_cols)[numeric_column].agg(stats).reset_index()

        elif stats == "range":
            if not numeric_column:
                raise ValueError(f"numeric_column must be provided for stats='{stats}'")
            result = df.groupby(group_cols)[numeric_column].agg(['min', 'max']).reset_index()
            result[stats] = result['max'] - result['min']
            result = result.drop(['min', 'max'], axis=1)

        elif stats in ["minority", "majority", "variety"]:
            if not numeric_column:
                raise ValueError(f"numeric_column must be provided for stats='{stats}'")

            # Define categorical aggregation function
            def cat_agg_func(x):
                values = x[numeric_column].dropna()
                freq = Counter(values)
                if not freq:
                    return None
                if stats == "minority":
                    return min(freq.items(), key=lambda y: y[1])[0]
                elif stats == "majority":
                    return max(freq.items(), key=lambda y: y[1])[0]
                elif stats == "variety":
                    return values.nunique()

            if category_column:
                # Handle categorical aggregation with category grouping
                all_categories = sorted([str(cat) for cat in df[category_column].unique()])
                result = df.groupby([h3_column, category_column]).apply(cat_agg_func, include_groups=False).reset_index(name=stats)
                result = result.pivot(index=h3_column, columns=category_column, values=stats)
                result = result.reindex(columns=all_categories, fill_value=0 if stats == "variety" else None)
                result = result.reset_index()
                result.columns = [h3_column] + [f"{cat}_{stats}" for cat in all_categories]
            else:
                # Handle categorical aggregation without category grouping
                result = df.groupby([h3_column]).apply(cat_agg_func, include_groups=False).reset_index(name=stats)
        else:
            raise ValueError(f"Unknown stats: {stats}")

        # Handle column renaming for non-categorical stats
        if len(result.columns) > len(group_cols) and not (category_column and stats in ["minority", "majority", "variety"]):
            result = result.rename(columns={result.columns[-1]: stats})

        # Handle category pivoting for non-categorical stats
        if category_column and stats not in ["minority", "majority", "variety"]:
            if len(result) == 0:
                result = pd.DataFrame(columns=[h3_column, category_column, stats])
            else:
                try:
                    # Pivot categories to columns
                    result = result.pivot(index=h3_column, columns=category_column, values=stats)
                    result = result.fillna(0)
                    result = result.reset_index()

                    # Rename columns with category prefixes
                    new_columns = [h3_column]
                    for col in sorted(result.columns[1:]):
                        if col == "NaN_category":
                            new_columns.append(f"NaN_{stats}")
                        else:
                            new_columns.append(f"{col}_{stats}")
                    result.columns = new_columns
                except Exception:
                    # Fallback to simple count if pivot fails
                    result = df.groupby(h3_column).size().reset_index(name=stats)

        # Add geometry if requested
        result = result.set_index(h3_column)
        if return_geometry:
            result = result.h3.h32geo()
        return result.reset_index()

    @doc_standard("h3_resolution", "containing the resolution of each H3 id")
    def h3_get_resolution(self) -> AnyDataFrame:
        """
        Examples
        --------
        >>> df = pd.DataFrame({'val': [5, 1]},
        >>>                   index=['881e309739fffff', '881e2659c3fffff'])
        >>> df.h3.h3_get_resolution()
                         val  h3_resolution
        881e309739fffff    5              8
        881e2659c3fffff    1              8
        """
        return self._apply_index_assign(h3.get_resolution, "h3_resolution")

    @doc_standard("h3_base_cell", "containing the base cell of each H3 id")
    def h3_get_base_cell(self):
        """
        Examples
        --------
        >>> df = pd.DataFrame({'val': [5, 1]},
        >>>                   index=['881e309739fffff', '881e2659c3fffff'])
        >>> df.h3.h3_get_base_cell()
                         val  h3_base_cell
        881e309739fffff    5            15
        881e2659c3fffff    1            15
        """
        return self._apply_index_assign(h3.get_base_cell_number, "h3_base_cell")

    @doc_standard("h3_is_valid", "containing the validity of each H3 id")
    def h3_is_valid(self):
        """
        Examples
        --------
        >>> df = pd.DataFrame({'val': [5, 1]}, index=['881e309739fffff', 'INVALID'])
        >>> df.h3.h3_is_valid()
                         val  h3_is_valid
        881e309739fffff    5         True
        INVALID            1        False
        """
        return self._apply_index_assign(h3.is_valid_cell, "h3_is_valid")

    @doc_standard(
        "h3_k_ring", "containing a list H3 ID within a distance of `k`"
    )
    def k_ring(self, k: int = 1, explode: bool = False) -> AnyDataFrame:
        """
        Parameters
        ----------
        k : int
            the distance from the origin H3 id. Default k = 1
        explode : bool
            If True, will explode the resulting list vertically.
            All other columns' values are copied.
            Default: False

        See Also
        --------
        k_ring_smoothing : Extended API method that distributes numeric values
            to the k-ring cells

        Examples
        --------
        >>> df = pd.DataFrame({'val': [5, 1]},
        >>>                   index=['881e309739fffff', '881e2659c3fffff'])
        >>> df.h3.k_ring(1)
                         val                                          h3_k_ring
        881e309739fffff    5  [881e30973dfffff, 881e309703fffff, 881e309707f...
        881e2659c3fffff    1  [881e2659ddfffff, 881e2659c3fffff, 881e2659cbf...

        >>> df.h3.k_ring(1, explode=True)
                         val        h3_k_ring
        881e2659c3fffff    1  881e2659ddfffff
        881e2659c3fffff    1  881e2659c3fffff
        881e2659c3fffff    1  881e2659cbfffff
        881e2659c3fffff    1  881e2659d5fffff
        881e2659c3fffff    1  881e2659c7fffff
        881e2659c3fffff    1  881e265989fffff
        881e2659c3fffff    1  881e2659c1fffff
        881e309739fffff    5  881e30973dfffff
        881e309739fffff    5  881e309703fffff
        881e309739fffff    5  881e309707fffff
        881e309739fffff    5  881e30973bfffff
        881e309739fffff    5  881e309715fffff
        881e309739fffff    5  881e309739fffff
        881e309739fffff    5  881e309731fffff
        """
        func = wrapped_partial(h3.grid_disk, k=k)
        column_name = "h3_k_ring"
        if explode:
            return self._apply_index_explode(func, column_name, list)
        return self._apply_index_assign(func, column_name, list)

    @doc_standard(
        "h3_hex_ring",
        "containing a list H3 ID forming a hollow hexagonal ring"
        "at a distance `k`",
    )
    def hex_ring(self, k: int = 1, explode: bool = False) -> AnyDataFrame:
        """
        Parameters
        ----------
        k : int
            the distance from the origin H3 id. Default k = 1
        explode : bool
            If True, will explode the resulting list vertically.
            All other columns' values are copied.
            Default: False

        Examples
        --------
        >>> df = pd.DataFrame({'val': [5, 1]},
        >>>                   index=['881e309739fffff', '881e2659c3fffff'])
        >>> df.h3.hex_ring(1)
                         val                                        h3_hex_ring
        881e309739fffff    5  [881e30973dfffff, 881e309703fffff, 881e309707f...
        881e2659c3fffff    1  [881e2659ddfffff, 881e2659cbfffff, 881e2659d5f...
        >>> df.h3.hex_ring(1, explode=True)
                         val      h3_hex_ring
        881e2659c3fffff    1  881e2659ddfffff
        881e2659c3fffff    1  881e2659cbfffff
        881e2659c3fffff    1  881e2659d5fffff
        881e2659c3fffff    1  881e2659c7fffff
        881e2659c3fffff    1  881e265989fffff
        881e2659c3fffff    1  881e2659c1fffff
        881e309739fffff    5  881e30973dfffff
        881e309739fffff    5  881e309703fffff
        881e309739fffff    5  881e309707fffff
        881e309739fffff    5  881e30973bfffff
        881e309739fffff    5  881e309715fffff
        881e309739fffff    5  881e309731fffff
        """
        func = wrapped_partial(h3.grid_ring, k=k)
        column_name = "h3_hex_ring"
        if explode:
            return self._apply_index_explode(func, column_name, list)
        return self._apply_index_assign(func, column_name, list)

    @doc_standard("h3_{resolution}", "containing the parent of each H3 id")
    def h32parent(self, resolution: int = None) -> AnyDataFrame:
        """
        Parameters
        ----------
        resolution : int or None
            H3 resolution. If None, then returns the direct parent of each H3 cell.

        See Also
        --------
        h3_to_parent_aggregate : Extended API method that aggregates cells by their
            parent cell

        Examples
        --------
        >>> df = pd.DataFrame({'val': [5, 1]},
        >>>                   index=['881e309739fffff', '881e2659c3fffff'])
        >>> df.h3.h3_to_parent(5)
                         val            h3_05
        881e309739fffff    5  851e3097fffffff
        881e2659c3fffff    1  851e265bfffffff
        """
        # TODO: Test `h3_parent` case
        column = (
            self._format_resolution(resolution)
            if resolution is not None
            else "h3_parent"
        )
        return self._apply_index_assign(
            wrapped_partial(h3.cell_to_parent, res=resolution), column
        )

    @doc_standard("h3_center_child", "containing the center child of each H3 id")
    def h3_to_center_child(self, resolution: int = None) -> AnyDataFrame:
        """
        Parameters
        ----------
        resolution : int or None
            H3 resolution. If none, then returns the child of resolution
            directly below that of each H3 cell

        Examples
        --------
        >>> df = pd.DataFrame({'val': [5, 1]},
        >>>                    index=['881e309739fffff', '881e2659c3fffff'])
        >>> df.h3.h3_to_center_child()
                         val  h3_center_child
        881e309739fffff    5  891e3097383ffff
        881e2659c3fffff    1  891e2659c23ffff
        """
        return self._apply_index_assign(
            wrapped_partial(h3.cell_to_center_child, res=resolution), "h3_center_child"
        )

    @doc_standard(
        "h3",
        "containing a list H3 ID whose centroid falls into the Polygon",
    )
    def polyfill(
        self, 
        resolution: int, 
        explode: bool = False,
        predicate: str = None,
        compact: bool = False
    ) -> AnyDataFrame:
        """
        Parameters
        ----------
        resolution : int
            H3 resolution
        explode : bool
            If True, will explode the resulting list vertically.
            All other columns' values are copied.
            Default: False
        predicate : str, optional
            Spatial predicate to apply ('intersect', 'within', 'centroid_within', 'largest_overlap')
        compact : bool, optional
            Enable H3 compact mode      
        """

        def func(row):
            return list(polyfill(row.geometry, resolution, predicate, compact))

        result = self._df.apply(func, axis=1)

        if not explode:
            assign_args = {"h3": result}
            return self._df.assign(**assign_args)

        result = result.explode().to_frame("h3")

        return self._df.join(result)

    @doc_standard("h3_cell_area", "containing the area of each H3 id")
    def cell_area(
        self, unit: Literal["km^2", "m^2", "rads^2"] = "km^2"
    ) -> AnyDataFrame:
        """
        Parameters
        ----------
        unit : str, options: 'km^2', 'm^2', or 'rads^2'
            Unit for area result. Default: 'km^2`

        Examples
        --------
        >>> df = pd.DataFrame({'val': [5, 1]},
        >>>                   index=['881e309739fffff', '881e2659c3fffff'])
        >>> df.h3.cell_area()
                         val  h3_cell_area
        881e309739fffff    5      0.695651
        881e2659c3fffff    1      0.684242
        """
        return self._apply_index_assign(
            wrapped_partial(h3.cell_area, unit=unit), "h3_cell_area"
        )

    # H3-Pandas Extended API
    # These methods extend the API to provide a convenient way to simplify workflows

    def geo2h3_aggregate(
        self,
        resolution: int,
        operation: Union[dict, str, Callable] = "count",
        lat_col: str = "lat",
        lon_col: str = "lon",
        return_geometry: bool = True,
    ) -> DataFrame:
        """Adds H3 index to DataFrame, groups points with the same index
        and performs `operation`.

        pd.DataFrame: uses `lat_col` and `lng_col` (default `lat` and `lng`)
        gpd.GeoDataFrame: uses `geometry`

        Parameters
        ----------
        resolution : int
            H3 resolution
        operation : Union[dict, str, Callable]
            Argument passed to DataFrame's `agg` method, default 'sum'
        lat_col : str
            Name of the latitude column (if used), default 'lat'
        lon_col : str
            Name of the longitude column (if used), default 'lon'
        return_geometry: bool
            (Optional) Whether to add a `geometry` column with the hexagonal cells.
            Default = True

        Returns
        -------
        (Geo)DataFrame aggregated by H3 id into which each row's point falls

        See Also
        --------
        geo_to_h3 : H3 API method upon which this function builds

        Examples
        --------
        >>> df = pd.DataFrame({'lat': [50, 51], 'lng':[14, 15], 'val': [10, 1]})
        >>> df.h3.geo_to_h3(1)
                         lat  lng  val
        h3_01
        811e3ffffffffff   50   14   10
        811e3ffffffffff   51   15    1
        >>> df.h3.geo_to_h3_aggregate(1)
                         val                                           geometry
        h3_01
        811e3ffffffffff   11  POLYGON ((12.34575 50.55428, 12.67732 46.40696...
        >>> df = pd.DataFrame({'lat': [50, 51], 'lng':[14, 15], 'val': [10, 1]})
        >>> df.h3.geo_to_h3_aggregate(1, operation='mean')
                         val                                           geometry
        h3_01
        811e3ffffffffff  5.5  POLYGON ((12.34575 50.55428, 12.67732 46.40696...
        >>> df.h3.geo_to_h3_aggregate(1, return_geometry=False)
                         val
        h3_01
        811e3ffffffffff   11
        """
        grouped = pd.DataFrame(
            self.latlon2h3(resolution, lat_col, lon_col, False)
            .drop(columns=[lat_col, lon_col, "geometry"], errors="ignore")
            # .groupby(self._format_resolution(resolution))
            .groupby("h3")
            .agg(operation)
        )
        return grouped.h3.h32geo() if return_geometry else grouped

    def h32parent_aggregate(
        self,
        resolution: int,
        operation: Union[dict, str, Callable] = "sum",
        return_geometry: bool = True,
    ) -> GeoDataFrame:
        """Assigns parent cell to each row, groups by it and performs `operation`.
        Assumes H3 index.

        Parameters
        ----------
        resolution : int
            H3 resolution
        operation : Union[dict, str, Callable]
            Argument passed to DataFrame's `agg` method, default 'sum'
        return_geometry: bool
            (Optional) Whether to add a `geometry` column with the hexagonal cells.
            Default = True

        Returns
        -------
        (Geo)DataFrame aggregated by the parent of each H3 id

        Raises
        ------
        ValueError
            When an invalid H3 id is encountered

        See Also
        --------
        h3_to_parent : H3 API method upon which this function builds

        Examples
        --------
        >>> df = pd.DataFrame({'val': [5, 1]},
        >>>                   index=['881e309739fffff', '881e2659c3fffff'])
        >>> df.h3.h3_to_parent(1)
                         val            h3_01
        881e309739fffff    5  811e3ffffffffff
        881e2659c3fffff    1  811e3ffffffffff
        >>> df.h3.h3_to_parent_aggregate(1)
                         val                                           geometry
        h3_01
        811e3ffffffffff    6  POLYGON ((12.34575 50.55428, 12.67732 46.40696...
        >>> df.h3.h3_to_parent_aggregate(1, operation='mean')
                         val                                           geometry
        h3_01
        811e3ffffffffff    3  POLYGON ((12.34575 50.55428, 12.67732 46.40696...
        >>> df.h3.h3_to_parent_aggregate(1, return_geometry=False)
                         val
        h3_01
        811e3ffffffffff    6
        """
        parent_h3ID = [
            catch_invalid_dggs_id(h3.cell_to_parent)(h3id, resolution)
            for h3id in self._df.index
        ]
        # h3_parent_column = self._format_resolution(resolution)
        h3_parent_column = "h3"
        kwargs_assign = {h3_parent_column: parent_h3ID}
        grouped = (
            self._df.assign(**kwargs_assign)
            .groupby(h3_parent_column)[[c for c in self._df.columns if c != "geometry"]]
            .agg(operation)
        )

        return grouped.h3.h32geo() if return_geometry else grouped

    # TODO: Needs to allow for handling relative values (e.g. percentage)
    # TODO: Will possibly fail in many cases (what are the existing columns?)
    # TODO: New cell behaviour
    def k_ring_smoothing(
        self,
        k: int = None,
        weights: Sequence[float] = None,
        return_geometry: bool = True,
    ) -> AnyDataFrame:
        """Experimental. Creates a k-ring around each input cell and distributes
        the cell's values.

        The values are distributed either
         - uniformly (by setting `k`) or
         - by weighing their values using `weights`.

        Only numeric columns are modified.

        Parameters
        ----------
        k : int
            The distance from the origin H3 id
        weights : Sequence[float]
            Weighting of the values based on the distance from the origin.
            First weight corresponds to the origin.
            Values are be normalized to add up to 1.
        return_geometry: bool
            (Optional) Whether to add a `geometry` column with the hexagonal cells.
            Default = True

        Returns
        -------
        (Geo)DataFrame with smoothed values

        See Also
        --------
        k_ring : H3 API method upon which this method builds

        Examples
        --------
        >>> df = pd.DataFrame({'val': [5, 1]},
        >>>                   index=['881e309739fffff', '881e2659c3fffff'])
        >>> df.h3.k_ring_smoothing(1)
                              val                                           geometry
        h3_k_ring
        881e265989fffff  0.142857  POLYGON ((14.99488 50.99821, 14.99260 50.99389...
        881e2659c1fffff  0.142857  POLYGON ((14.97944 51.00758, 14.97717 51.00326...
        881e2659c3fffff  0.142857  POLYGON ((14.99201 51.00565, 14.98973 51.00133...
        881e2659c7fffff  0.142857  POLYGON ((14.98231 51.00014, 14.98004 50.99582...
        881e2659cbfffff  0.142857  POLYGON ((14.98914 51.01308, 14.98687 51.00877...
        881e2659d5fffff  0.142857  POLYGON ((15.00458 51.00371, 15.00230 50.99940...
        881e2659ddfffff  0.142857  POLYGON ((15.00171 51.01115, 14.99943 51.00684...
        881e309703fffff  0.714286  POLYGON ((13.99235 50.01119, 13.99017 50.00681...
        881e309707fffff  0.714286  POLYGON ((13.98290 50.00555, 13.98072 50.00116...
        881e309715fffff  0.714286  POLYGON ((14.00473 50.00932, 14.00255 50.00494...
        881e309731fffff  0.714286  POLYGON ((13.99819 49.99617, 13.99602 49.99178...
        881e309739fffff  0.714286  POLYGON ((13.99527 50.00368, 13.99310 49.99929...
        881e30973bfffff  0.714286  POLYGON ((14.00765 50.00181, 14.00547 49.99742...
        881e30973dfffff  0.714286  POLYGON ((13.98582 49.99803, 13.98364 49.99365...
        >>> df.h3.k_ring_smoothing(weights=[2, 1])
                           val                                           geometry
        h3_hex_ring
        881e265989fffff  0.125  POLYGON ((14.99488 50.99821, 14.99260 50.99389...
        881e2659c1fffff  0.125  POLYGON ((14.97944 51.00758, 14.97717 51.00326...
        881e2659c3fffff  0.250  POLYGON ((14.99201 51.00565, 14.98973 51.00133...
        881e2659c7fffff  0.125  POLYGON ((14.98231 51.00014, 14.98004 50.99582...
        881e2659cbfffff  0.125  POLYGON ((14.98914 51.01308, 14.98687 51.00877...
        881e2659d5fffff  0.125  POLYGON ((15.00458 51.00371, 15.00230 50.99940...
        881e2659ddfffff  0.125  POLYGON ((15.00171 51.01115, 14.99943 51.00684...
        881e309703fffff  0.625  POLYGON ((13.99235 50.01119, 13.99017 50.00681...
        881e309707fffff  0.625  POLYGON ((13.98290 50.00555, 13.98072 50.00116...
        881e309715fffff  0.625  POLYGON ((14.00473 50.00932, 14.00255 50.00494...
        881e309731fffff  0.625  POLYGON ((13.99819 49.99617, 13.99602 49.99178...
        881e309739fffff  1.250  POLYGON ((13.99527 50.00368, 13.99310 49.99929...
        881e30973bfffff  0.625  POLYGON ((14.00765 50.00181, 14.00547 49.99742...
        881e30973dfffff  0.625  POLYGON ((13.98582 49.99803, 13.98364 49.99365...
        >>> df.h3.k_ring_smoothing(1, return_geometry=False)
                              val
        h3_k_ring
        881e265989fffff  0.142857
        881e2659c1fffff  0.142857
        881e2659c3fffff  0.142857
        881e2659c7fffff  0.142857
        881e2659cbfffff  0.142857
        881e2659d5fffff  0.142857
        881e2659ddfffff  0.142857
        881e309703fffff  0.714286
        881e309707fffff  0.714286
        881e309715fffff  0.714286
        881e309731fffff  0.714286
        881e309739fffff  0.714286
        881e30973bfffff  0.714286
        881e30973dfffff  0.714286
        """
        # Drop geometry if present
        df = self._df.drop(columns=["geometry"], errors="ignore")

        if sum([weights is None, k is None]) != 1:
            raise ValueError("Exactly one of `k` and `weights` must be set.")

        # If weights are all equal, use the computationally simpler option
        if (weights is not None) and (len(set(weights)) == 1):
            k = len(weights) - 1
            weights = None

        # Unweighted case
        if weights is None:
            result = pd.DataFrame(
                df.h3.k_ring(k, explode=True)
                .groupby("h3_k_ring")
                .sum()
                .divide((1 + 3 * k * (k + 1)))
            )

            return result.h3.h3_to_geo_boundary() if return_geometry else result

        if len(weights) == 0:
            raise ValueError("Weights cannot be empty.")

        # Weighted case
        weights = np.array(weights)
        multipliers = np.array([1] + [i * 6 for i in range(1, len(weights))])
        weights = weights / (weights * multipliers).sum()

        # This should be exploded hex ring
        def weighted_hex_ring(df, k, normalized_weight):
            return df.h3.hex_ring(k, explode=True).h3._multiply_numeric(
                normalized_weight
            )

        result = (
            pd.concat(
                [weighted_hex_ring(df, i, weights[i]) for i in range(len(weights))]
            )
            .groupby("h3_hex_ring")
            .sum()
        )

        return result.h3.h3_to_geo_boundary() if return_geometry else result

    def polyfill_resample(
        self, resolution: int, return_geometry: bool = True
    ) -> AnyDataFrame:
        """Experimental. Currently essentially polyfill(..., explode=True) that
        sets the H3 index and adds the H3 cell geometry.

        Parameters
        ----------
        resolution : int
            H3 resolution
        return_geometry: bool
            (Optional) Whether to add a `geometry` column with the hexagonal cells.
            Default = True

        Returns
        -------
        (Geo)DataFrame with H3 cells with centroids within the input polygons.

        See Also
        --------
        polyfill : H3 API method upon which this method builds

        Examples
        --------
        >>> from shapely.geometry import box
        >>> gdf = gpd.GeoDataFrame(geometry=[box(0, 0, 1, 1)])
        >>> gdf.h3.polyfill_resample(4)
                         index                                           geometry
        h3
        84754e3ffffffff      0  POLYGON ((0.33404 -0.11975, 0.42911 0.07901, 0...
        84754c7ffffffff      0  POLYGON ((0.92140 -0.03115, 1.01693 0.16862, 0...
        84754c5ffffffff      0  POLYGON ((0.91569 0.33807, 1.01106 0.53747, 0....
        84754ebffffffff      0  POLYGON ((0.62438 0.10878, 0.71960 0.30787, 0....
        84754edffffffff      0  POLYGON ((0.32478 0.61394, 0.41951 0.81195, 0....
        84754e1ffffffff      0  POLYGON ((0.32940 0.24775, 0.42430 0.44615, 0....
        84754e9ffffffff      0  POLYGON ((0.61922 0.47649, 0.71427 0.67520, 0....
        8475413ffffffff      0  POLYGON ((0.91001 0.70597, 1.00521 0.90497, 0....
        """
        result = self._df.h3.polyfill(resolution, explode=True)
        uncovered_rows = result[COLUMN_H3_POLYFILL].isna()
        n_uncovered_rows = uncovered_rows.sum()
        if n_uncovered_rows > 0:
            warnings.warn(
                f"{n_uncovered_rows} rows did not generate a H3 cell."
                "Consider using a finer resolution."
            )
            result = result.loc[~uncovered_rows]

        result = result.reset_index().set_index(COLUMN_H3_POLYFILL)

        return result.h3.h3_to_geo_boundary() if return_geometry else result

    def linetrace(self, resolution: int, explode: bool = False) -> AnyDataFrame:
        """Experimental. An H3 cell representation of a (Multi)LineString,
        which permits repeated cells, but not if they are repeated in
        immediate sequence.

        Parameters
        ----------
        resolution : int
            H3 resolution
        explode : bool
            If True, will explode the resulting list vertically.
            All other columns' values are copied.
            Default: False

        Returns
        -------
        (Geo)DataFrame with H3 cells with centroids within the input polygons.

        Examples
        --------
        >>> from shapely.geometry import LineString
        >>> gdf = gpd.GeoDataFrame(geometry=[LineString([[0, 0], [1, 0], [1, 1]])])
        >>> gdf.h3.linetrace(4)
                                                    geometry                                       h3_linetrace
        0  LINESTRING (0.00000 0.00000, 1.00000 0.00000, ...  [83754efffffffff, 83754cfffffffff, 837541fffff...  # noqa E501
        >>> gdf.h3.linetrace(4, explode=True)
                                                    geometry     h3_linetrace
        0  LINESTRING (0.00000 0.00000, 1.00000 0.00000, ...  83754efffffffff
        0  LINESTRING (0.00000 0.00000, 1.00000 0.00000, ...  83754cfffffffff
        0  LINESTRING (0.00000 0.00000, 1.00000 0.00000, ...  837541fffffffff

        """

        def func(row):
            return list(linetrace(row.geometry, resolution))

        df = self._df

        result = df.apply(func, axis=1)
        if not explode:
            assign_args = {COLUMN_H3_LINETRACE: result}
            return df.assign(**assign_args)

        result = result.explode().to_frame(COLUMN_H3_LINETRACE)
        return df.join(result)


    def _apply_index_assign(
        self,
        func: Callable,
        column_name: str,
        processor: Callable = lambda x: x,
        finalizer: Callable = lambda x: x,
    ) -> Any:
        """Helper method. Applies `func` to index and assigns the result to `column`.

        Parameters
        ----------
        func : Callable
            single-argument function to be applied to each H3 id
        column_name : str
            name of the resulting column
        processor : Callable
            (Optional) further processes the result of func. Default: identity
        finalizer : Callable
            (Optional) further processes the resulting dataframe. Default: identity

        Returns
        -------
        Dataframe with column `column` containing the result of `func`.
        If using `finalizer`, can return anything the `finalizer` returns.
        """
        func = catch_invalid_dggs_id(func)
        result = [processor(func(h3id)) for h3id in self._df.index]
        assign_args = {column_name: result}
        return finalizer(self._df.assign(**assign_args))

    def _apply_index_explode(
        self,
        func: Callable,
        column_name: str,
        processor: Callable = lambda x: x,
        finalizer: Callable = lambda x: x,
    ) -> Any:
        """Helper method. Applies a list-making `func` to index and performs
        a vertical explode.
        Any additional values are simply copied to all the rows.

        Parameters
        ----------
        func : Callable
            single-argument function to be applied to each H3 id
        column_name : str
            name of the resulting column
        processor : Callable
            (Optional) further processes the result of func. Default: identity
        finalizer : Callable
            (Optional) further processes the resulting dataframe. Default: identity

        Returns
        -------
        Dataframe with column `column` containing the result of `func`.
        If using `finalizer`, can return anything the `finalizer` returns.
        """
        func = catch_invalid_dggs_id(func)
        result = (
            pd.DataFrame.from_dict(
                {h3id: processor(func(h3id)) for h3id in self._df.index},
                orient="index",
            )
            .stack()
            .to_frame(column_name)
            .reset_index(level=1, drop=True)
        )
        result = self._df.join(result)
        return finalizer(result)

    # TODO: types, doc, ..
    def _multiply_numeric(self, value):
        columns_numeric = self._df.select_dtypes(include=["number"]).columns
        assign_args = {
            column: self._df[column].multiply(value) for column in columns_numeric
        }
        return self._df.assign(**assign_args)

    @staticmethod
    def _format_resolution(resolution: int) -> str:
        return f"h3_{str(resolution).zfill(2)}"

cell_area(unit='km^2')

Parameters

unit : str, options: 'km^2', 'm^2', or 'rads^2' Unit for area result. Default: 'km^2`

Examples

df = pd.DataFrame({'val': [5, 1]}, index=['881e309739fffff', '881e2659c3fffff']) df.h3.cell_area() val h3_cell_area 881e309739fffff 5 0.695651 881e2659c3fffff 1 0.684242

Source code in vgridpandas\h3pandas\h3pandas.py
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
@doc_standard("h3_cell_area", "containing the area of each H3 id")
def cell_area(
    self, unit: Literal["km^2", "m^2", "rads^2"] = "km^2"
) -> AnyDataFrame:
    """
    Parameters
    ----------
    unit : str, options: 'km^2', 'm^2', or 'rads^2'
        Unit for area result. Default: 'km^2`

    Examples
    --------
    >>> df = pd.DataFrame({'val': [5, 1]},
    >>>                   index=['881e309739fffff', '881e2659c3fffff'])
    >>> df.h3.cell_area()
                     val  h3_cell_area
    881e309739fffff    5      0.695651
    881e2659c3fffff    1      0.684242
    """
    return self._apply_index_assign(
        wrapped_partial(h3.cell_area, unit=unit), "h3_cell_area"
    )

geo2h3_aggregate(resolution, operation='count', lat_col='lat', lon_col='lon', return_geometry=True)

Adds H3 index to DataFrame, groups points with the same index and performs operation.

pd.DataFrame: uses lat_col and lng_col (default lat and lng) gpd.GeoDataFrame: uses geometry

Parameters

resolution : int H3 resolution operation : Union[dict, str, Callable] Argument passed to DataFrame's agg method, default 'sum' lat_col : str Name of the latitude column (if used), default 'lat' lon_col : str Name of the longitude column (if used), default 'lon' return_geometry: bool (Optional) Whether to add a geometry column with the hexagonal cells. Default = True

Returns

(Geo)DataFrame aggregated by H3 id into which each row's point falls

See Also

geo_to_h3 : H3 API method upon which this function builds

Examples

df = pd.DataFrame({'lat': [50, 51], 'lng':[14, 15], 'val': [10, 1]}) df.h3.geo_to_h3(1) lat lng val h3_01 811e3ffffffffff 50 14 10 811e3ffffffffff 51 15 1 df.h3.geo_to_h3_aggregate(1) val geometry h3_01 811e3ffffffffff 11 POLYGON ((12.34575 50.55428, 12.67732 46.40696... df = pd.DataFrame({'lat': [50, 51], 'lng':[14, 15], 'val': [10, 1]}) df.h3.geo_to_h3_aggregate(1, operation='mean') val geometry h3_01 811e3ffffffffff 5.5 POLYGON ((12.34575 50.55428, 12.67732 46.40696... df.h3.geo_to_h3_aggregate(1, return_geometry=False) val h3_01 811e3ffffffffff 11

Source code in vgridpandas\h3pandas\h3pandas.py
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
def geo2h3_aggregate(
    self,
    resolution: int,
    operation: Union[dict, str, Callable] = "count",
    lat_col: str = "lat",
    lon_col: str = "lon",
    return_geometry: bool = True,
) -> DataFrame:
    """Adds H3 index to DataFrame, groups points with the same index
    and performs `operation`.

    pd.DataFrame: uses `lat_col` and `lng_col` (default `lat` and `lng`)
    gpd.GeoDataFrame: uses `geometry`

    Parameters
    ----------
    resolution : int
        H3 resolution
    operation : Union[dict, str, Callable]
        Argument passed to DataFrame's `agg` method, default 'sum'
    lat_col : str
        Name of the latitude column (if used), default 'lat'
    lon_col : str
        Name of the longitude column (if used), default 'lon'
    return_geometry: bool
        (Optional) Whether to add a `geometry` column with the hexagonal cells.
        Default = True

    Returns
    -------
    (Geo)DataFrame aggregated by H3 id into which each row's point falls

    See Also
    --------
    geo_to_h3 : H3 API method upon which this function builds

    Examples
    --------
    >>> df = pd.DataFrame({'lat': [50, 51], 'lng':[14, 15], 'val': [10, 1]})
    >>> df.h3.geo_to_h3(1)
                     lat  lng  val
    h3_01
    811e3ffffffffff   50   14   10
    811e3ffffffffff   51   15    1
    >>> df.h3.geo_to_h3_aggregate(1)
                     val                                           geometry
    h3_01
    811e3ffffffffff   11  POLYGON ((12.34575 50.55428, 12.67732 46.40696...
    >>> df = pd.DataFrame({'lat': [50, 51], 'lng':[14, 15], 'val': [10, 1]})
    >>> df.h3.geo_to_h3_aggregate(1, operation='mean')
                     val                                           geometry
    h3_01
    811e3ffffffffff  5.5  POLYGON ((12.34575 50.55428, 12.67732 46.40696...
    >>> df.h3.geo_to_h3_aggregate(1, return_geometry=False)
                     val
    h3_01
    811e3ffffffffff   11
    """
    grouped = pd.DataFrame(
        self.latlon2h3(resolution, lat_col, lon_col, False)
        .drop(columns=[lat_col, lon_col, "geometry"], errors="ignore")
        # .groupby(self._format_resolution(resolution))
        .groupby("h3")
        .agg(operation)
    )
    return grouped.h3.h32geo() if return_geometry else grouped

h32geo(h3_column=None)

Add geometry with H3 geometry to the DataFrame. Assumes H3 token.

Parameters

h3_column : str, optional Name of the column containing H3 tokens. If None, assumes H3 tokens are in the index.

Returns

GeoDataFrame with H3 geometry

Raises

ValueError When an invalid H3 token is encountered

Examples

df = pd.DataFrame({'val': [5, 1]}, index=['881e309739fffff', '881e2659c3fffff']) df.h3.h32geo() val geometry 881e309739fffff 5 POLYGON ((13.99527 50.00368, 13.99310 49.99929... 881e2659c3fffff 1 POLYGON ((14.99201 51.00565, 14.98973 51.00133...

Source code in vgridpandas\h3pandas\h3pandas.py
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
def h32geo(self, h3_column: str = None) -> GeoDataFrame:
    """Add geometry with H3 geometry to the DataFrame. Assumes H3 token.

    Parameters
    ----------
    h3_column : str, optional
        Name of the column containing H3 tokens. If None, assumes H3 tokens are in the index.

    Returns
    -------
    GeoDataFrame with H3 geometry

    Raises
    ------
    ValueError
        When an invalid H3 token is encountered

    Examples
    --------
    >>> df = pd.DataFrame({'val': [5, 1]},
    >>>                   index=['881e309739fffff', '881e2659c3fffff'])
    >>> df.h3.h32geo()
                     val                                           geometry
    881e309739fffff    5  POLYGON ((13.99527 50.00368, 13.99310 49.99929...
    881e2659c3fffff    1  POLYGON ((14.99201 51.00565, 14.98973 51.00133...
    """

    if h3_column is not None:
        # H3 tokens are in the specified column
        if h3_column not in self._df.columns:
            raise ValueError(f"Column '{h3_column}' not found in DataFrame")
        h3_tokens = self._df[h3_column]

        # Handle both single tokens and lists of tokens
        geometries = []
        for tokens in h3_tokens:
            try:
                if pd.isna(tokens):
                    # Handle NaN values - create empty geometry
                    geometries.append(Polygon())
                elif isinstance(tokens, list):
                    # Handle list of tokens - create a MultiPolygon
                    if len(tokens) == 0:
                        # Handle empty list - create empty geometry
                        geometries.append(Polygon())
                    else:
                        cell_geometries = [cell_to_boundary_lng_lat(token) for token in tokens]
                        geometries.append(MultiPolygon(cell_geometries))
                else:
                    # Handle single token
                    geometries.append(cell_to_boundary_lng_lat(tokens))
            except (ValueError, TypeError):
                if isinstance(tokens, list):
                    if len(tokens) == 0:
                        geometries.append(Polygon())
                    else:
                        cell_geometries = [cell_to_boundary_lng_lat(token) for token in tokens]
                        geometries.append(MultiPolygon(cell_geometries))
                else:
                    # Try to handle as single token
                    try:
                        geometries.append(cell_to_boundary_lng_lat(tokens))
                    except Exception:
                        # If all else fails, create empty geometry
                        geometries.append(Polygon())

        result_df = self._df.copy()
        result_df['geometry'] = geometries
        return gpd.GeoDataFrame(result_df, crs="epsg:4326")

    else:
        # H3 tokens are in the index
        return self._apply_index_assign(
            wrapped_partial(cell_to_boundary_lng_lat),
            "geometry",
            finalizer=lambda x: gpd.GeoDataFrame(x, crs="epsg:4326"),
        )

h32latlon()

Add geometry with centroid of each H3 id to the DataFrame. Assumes H3 index.

Returns

GeoDataFrame with Point geometry

Raises

ValueError When an invalid H3 id is encountered

See Also

h3_to_geo_boundary : Adds a hexagonal cell

Examples

df = pd.DataFrame({'val': [5, 1]}, index=['881e309739fffff', '881e2659c3fffff']) df.h3.h3_to_geo() val geometry 881e309739fffff 5 POINT (14.00037 50.00055) 881e2659c3fffff 1 POINT (14.99715 51.00252)

Source code in vgridpandas\h3pandas\h3pandas.py
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
def h32latlon(self) -> GeoDataFrame:
    """Add `geometry` with centroid of each H3 id to the DataFrame.
    Assumes H3 index.

    Returns
    -------
    GeoDataFrame with Point geometry

    Raises
    ------
    ValueError
        When an invalid H3 id is encountered

    See Also
    --------
    h3_to_geo_boundary : Adds a hexagonal cell

    Examples
    --------
    >>> df = pd.DataFrame({'val': [5, 1]},
    >>>                   index=['881e309739fffff', '881e2659c3fffff'])
    >>> df.h3.h3_to_geo()
                     val                   geometry
    881e309739fffff    5  POINT (14.00037 50.00055)
    881e2659c3fffff    1  POINT (14.99715 51.00252)

    """
    return self._apply_index_assign(
        h3.cell_to_latlng,
        "geometry",
        lambda x: _switch_lat_lng(shapely.geometry.Point(x)),
        lambda x: gpd.GeoDataFrame(x, crs="epsg:4326"),
    )

h32parent(resolution=None)

Parameters

resolution : int or None H3 resolution. If None, then returns the direct parent of each H3 cell.

See Also

h3_to_parent_aggregate : Extended API method that aggregates cells by their parent cell

Examples

df = pd.DataFrame({'val': [5, 1]}, index=['881e309739fffff', '881e2659c3fffff']) df.h3.h3_to_parent(5) val h3_05 881e309739fffff 5 851e3097fffffff 881e2659c3fffff 1 851e265bfffffff

Source code in vgridpandas\h3pandas\h3pandas.py
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
@doc_standard("h3_{resolution}", "containing the parent of each H3 id")
def h32parent(self, resolution: int = None) -> AnyDataFrame:
    """
    Parameters
    ----------
    resolution : int or None
        H3 resolution. If None, then returns the direct parent of each H3 cell.

    See Also
    --------
    h3_to_parent_aggregate : Extended API method that aggregates cells by their
        parent cell

    Examples
    --------
    >>> df = pd.DataFrame({'val': [5, 1]},
    >>>                   index=['881e309739fffff', '881e2659c3fffff'])
    >>> df.h3.h3_to_parent(5)
                     val            h3_05
    881e309739fffff    5  851e3097fffffff
    881e2659c3fffff    1  851e265bfffffff
    """
    # TODO: Test `h3_parent` case
    column = (
        self._format_resolution(resolution)
        if resolution is not None
        else "h3_parent"
    )
    return self._apply_index_assign(
        wrapped_partial(h3.cell_to_parent, res=resolution), column
    )

h32parent_aggregate(resolution, operation='sum', return_geometry=True)

Assigns parent cell to each row, groups by it and performs operation. Assumes H3 index.

Parameters

resolution : int H3 resolution operation : Union[dict, str, Callable] Argument passed to DataFrame's agg method, default 'sum' return_geometry: bool (Optional) Whether to add a geometry column with the hexagonal cells. Default = True

Returns

(Geo)DataFrame aggregated by the parent of each H3 id

Raises

ValueError When an invalid H3 id is encountered

See Also

h3_to_parent : H3 API method upon which this function builds

Examples

df = pd.DataFrame({'val': [5, 1]}, index=['881e309739fffff', '881e2659c3fffff']) df.h3.h3_to_parent(1) val h3_01 881e309739fffff 5 811e3ffffffffff 881e2659c3fffff 1 811e3ffffffffff df.h3.h3_to_parent_aggregate(1) val geometry h3_01 811e3ffffffffff 6 POLYGON ((12.34575 50.55428, 12.67732 46.40696... df.h3.h3_to_parent_aggregate(1, operation='mean') val geometry h3_01 811e3ffffffffff 3 POLYGON ((12.34575 50.55428, 12.67732 46.40696... df.h3.h3_to_parent_aggregate(1, return_geometry=False) val h3_01 811e3ffffffffff 6

Source code in vgridpandas\h3pandas\h3pandas.py
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
def h32parent_aggregate(
    self,
    resolution: int,
    operation: Union[dict, str, Callable] = "sum",
    return_geometry: bool = True,
) -> GeoDataFrame:
    """Assigns parent cell to each row, groups by it and performs `operation`.
    Assumes H3 index.

    Parameters
    ----------
    resolution : int
        H3 resolution
    operation : Union[dict, str, Callable]
        Argument passed to DataFrame's `agg` method, default 'sum'
    return_geometry: bool
        (Optional) Whether to add a `geometry` column with the hexagonal cells.
        Default = True

    Returns
    -------
    (Geo)DataFrame aggregated by the parent of each H3 id

    Raises
    ------
    ValueError
        When an invalid H3 id is encountered

    See Also
    --------
    h3_to_parent : H3 API method upon which this function builds

    Examples
    --------
    >>> df = pd.DataFrame({'val': [5, 1]},
    >>>                   index=['881e309739fffff', '881e2659c3fffff'])
    >>> df.h3.h3_to_parent(1)
                     val            h3_01
    881e309739fffff    5  811e3ffffffffff
    881e2659c3fffff    1  811e3ffffffffff
    >>> df.h3.h3_to_parent_aggregate(1)
                     val                                           geometry
    h3_01
    811e3ffffffffff    6  POLYGON ((12.34575 50.55428, 12.67732 46.40696...
    >>> df.h3.h3_to_parent_aggregate(1, operation='mean')
                     val                                           geometry
    h3_01
    811e3ffffffffff    3  POLYGON ((12.34575 50.55428, 12.67732 46.40696...
    >>> df.h3.h3_to_parent_aggregate(1, return_geometry=False)
                     val
    h3_01
    811e3ffffffffff    6
    """
    parent_h3ID = [
        catch_invalid_dggs_id(h3.cell_to_parent)(h3id, resolution)
        for h3id in self._df.index
    ]
    # h3_parent_column = self._format_resolution(resolution)
    h3_parent_column = "h3"
    kwargs_assign = {h3_parent_column: parent_h3ID}
    grouped = (
        self._df.assign(**kwargs_assign)
        .groupby(h3_parent_column)[[c for c in self._df.columns if c != "geometry"]]
        .agg(operation)
    )

    return grouped.h3.h32geo() if return_geometry else grouped

h3_get_base_cell()

Examples

df = pd.DataFrame({'val': [5, 1]}, index=['881e309739fffff', '881e2659c3fffff']) df.h3.h3_get_base_cell() val h3_base_cell 881e309739fffff 5 15 881e2659c3fffff 1 15

Source code in vgridpandas\h3pandas\h3pandas.py
365
366
367
368
369
370
371
372
373
374
375
376
377
@doc_standard("h3_base_cell", "containing the base cell of each H3 id")
def h3_get_base_cell(self):
    """
    Examples
    --------
    >>> df = pd.DataFrame({'val': [5, 1]},
    >>>                   index=['881e309739fffff', '881e2659c3fffff'])
    >>> df.h3.h3_get_base_cell()
                     val  h3_base_cell
    881e309739fffff    5            15
    881e2659c3fffff    1            15
    """
    return self._apply_index_assign(h3.get_base_cell_number, "h3_base_cell")

h3_get_resolution()

Examples

df = pd.DataFrame({'val': [5, 1]}, index=['881e309739fffff', '881e2659c3fffff']) df.h3.h3_get_resolution() val h3_resolution 881e309739fffff 5 8 881e2659c3fffff 1 8

Source code in vgridpandas\h3pandas\h3pandas.py
351
352
353
354
355
356
357
358
359
360
361
362
363
@doc_standard("h3_resolution", "containing the resolution of each H3 id")
def h3_get_resolution(self) -> AnyDataFrame:
    """
    Examples
    --------
    >>> df = pd.DataFrame({'val': [5, 1]},
    >>>                   index=['881e309739fffff', '881e2659c3fffff'])
    >>> df.h3.h3_get_resolution()
                     val  h3_resolution
    881e309739fffff    5              8
    881e2659c3fffff    1              8
    """
    return self._apply_index_assign(h3.get_resolution, "h3_resolution")

h3_is_valid()

Examples

df = pd.DataFrame({'val': [5, 1]}, index=['881e309739fffff', 'INVALID']) df.h3.h3_is_valid() val h3_is_valid 881e309739fffff 5 True INVALID 1 False

Source code in vgridpandas\h3pandas\h3pandas.py
379
380
381
382
383
384
385
386
387
388
389
390
@doc_standard("h3_is_valid", "containing the validity of each H3 id")
def h3_is_valid(self):
    """
    Examples
    --------
    >>> df = pd.DataFrame({'val': [5, 1]}, index=['881e309739fffff', 'INVALID'])
    >>> df.h3.h3_is_valid()
                     val  h3_is_valid
    881e309739fffff    5         True
    INVALID            1        False
    """
    return self._apply_index_assign(h3.is_valid_cell, "h3_is_valid")

h3_to_center_child(resolution=None)

Parameters

resolution : int or None H3 resolution. If none, then returns the child of resolution directly below that of each H3 cell

Examples

df = pd.DataFrame({'val': [5, 1]}, index=['881e309739fffff', '881e2659c3fffff']) df.h3.h3_to_center_child() val h3_center_child 881e309739fffff 5 891e3097383ffff 881e2659c3fffff 1 891e2659c23ffff

Source code in vgridpandas\h3pandas\h3pandas.py
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
@doc_standard("h3_center_child", "containing the center child of each H3 id")
def h3_to_center_child(self, resolution: int = None) -> AnyDataFrame:
    """
    Parameters
    ----------
    resolution : int or None
        H3 resolution. If none, then returns the child of resolution
        directly below that of each H3 cell

    Examples
    --------
    >>> df = pd.DataFrame({'val': [5, 1]},
    >>>                    index=['881e309739fffff', '881e2659c3fffff'])
    >>> df.h3.h3_to_center_child()
                     val  h3_center_child
    881e309739fffff    5  891e3097383ffff
    881e2659c3fffff    1  891e2659c23ffff
    """
    return self._apply_index_assign(
        wrapped_partial(h3.cell_to_center_child, res=resolution), "h3_center_child"
    )

h3bin(resolution, stats='count', numeric_column=None, category_column=None, lat_col='lat', lon_col='lon', return_geometry=True)

Bin points into H3 cells and compute statistics, optionally grouped by a category column.

Supports both GeoDataFrame (with point geometry) and DataFrame (with lat/lon columns).

Parameters

resolution : int H3 resolution stats : str Statistic to compute: count, sum, min, max, mean, median, std, var, range, minority, majority, variety numeric_column : str, optional Name of the numeric column to aggregate (for sum, min, max, etc.) or the value column for minority/majority/variety stats category_column : str, optional Name of the category column to group by. Required for minority, majority, and variety stats when grouping by category. lat_col : str, optional Name of the latitude column (only used for DataFrame input, ignored for GeoDataFrame) lon_col : str, optional Name of the longitude column (only used for DataFrame input, ignored for GeoDataFrame) return_geometry : bool If True, return a GeoDataFrame with H3 cell geometry

Source code in vgridpandas\h3pandas\h3pandas.py
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
def h3bin(
    self,
    resolution: int,
    stats: str = "count",
    numeric_column: str = None,
    category_column: str = None,
    lat_col: str = "lat",
    lon_col: str = "lon",
    return_geometry: bool = True,
) -> DataFrame:
    """
    Bin points into H3 cells and compute statistics, optionally grouped by a category column.

    Supports both GeoDataFrame (with point geometry) and DataFrame (with lat/lon columns).

    Parameters
    ----------
    resolution : int
        H3 resolution
    stats : str
        Statistic to compute: count, sum, min, max, mean, median, std, var, range, minority, majority, variety
    numeric_column : str, optional
        Name of the numeric column to aggregate (for sum, min, max, etc.) or the value column for minority/majority/variety stats
    category_column : str, optional
        Name of the category column to group by. Required for minority, majority, and variety stats when grouping by category.
    lat_col : str, optional
        Name of the latitude column (only used for DataFrame input, ignored for GeoDataFrame)
    lon_col : str, optional
        Name of the longitude column (only used for DataFrame input, ignored for GeoDataFrame)
    return_geometry : bool
        If True, return a GeoDataFrame with H3 cell geometry
    """
    # Validate inputs and prepare data
    # h3_column = self._format_resolution(resolution)
    h3_column = "h3"
    df = self.latlon2h3(resolution, lat_col, lon_col, False)

    # Validate column existence
    if category_column is not None and category_column not in df.columns:
        raise ValueError(f"Category column '{category_column}' not found in DataFrame")
    if numeric_column is not None and numeric_column not in df.columns:
        raise ValueError(f"Numeric column '{numeric_column}' not found in DataFrame")

    # Prepare grouping columns
    group_cols = [h3_column]
    if category_column:
        df[category_column] = df[category_column].fillna("NaN_category")
        group_cols.append(category_column)

    # Perform aggregation based on stats type
    if stats == "count":
        result = df.groupby(group_cols).size().reset_index(name=stats)

    elif stats in ["sum", "min", "max", "mean", "median", "std", "var"]:
        if not numeric_column:
            raise ValueError(f"numeric_column must be provided for stats='{stats}'")
        result = df.groupby(group_cols)[numeric_column].agg(stats).reset_index()

    elif stats == "range":
        if not numeric_column:
            raise ValueError(f"numeric_column must be provided for stats='{stats}'")
        result = df.groupby(group_cols)[numeric_column].agg(['min', 'max']).reset_index()
        result[stats] = result['max'] - result['min']
        result = result.drop(['min', 'max'], axis=1)

    elif stats in ["minority", "majority", "variety"]:
        if not numeric_column:
            raise ValueError(f"numeric_column must be provided for stats='{stats}'")

        # Define categorical aggregation function
        def cat_agg_func(x):
            values = x[numeric_column].dropna()
            freq = Counter(values)
            if not freq:
                return None
            if stats == "minority":
                return min(freq.items(), key=lambda y: y[1])[0]
            elif stats == "majority":
                return max(freq.items(), key=lambda y: y[1])[0]
            elif stats == "variety":
                return values.nunique()

        if category_column:
            # Handle categorical aggregation with category grouping
            all_categories = sorted([str(cat) for cat in df[category_column].unique()])
            result = df.groupby([h3_column, category_column]).apply(cat_agg_func, include_groups=False).reset_index(name=stats)
            result = result.pivot(index=h3_column, columns=category_column, values=stats)
            result = result.reindex(columns=all_categories, fill_value=0 if stats == "variety" else None)
            result = result.reset_index()
            result.columns = [h3_column] + [f"{cat}_{stats}" for cat in all_categories]
        else:
            # Handle categorical aggregation without category grouping
            result = df.groupby([h3_column]).apply(cat_agg_func, include_groups=False).reset_index(name=stats)
    else:
        raise ValueError(f"Unknown stats: {stats}")

    # Handle column renaming for non-categorical stats
    if len(result.columns) > len(group_cols) and not (category_column and stats in ["minority", "majority", "variety"]):
        result = result.rename(columns={result.columns[-1]: stats})

    # Handle category pivoting for non-categorical stats
    if category_column and stats not in ["minority", "majority", "variety"]:
        if len(result) == 0:
            result = pd.DataFrame(columns=[h3_column, category_column, stats])
        else:
            try:
                # Pivot categories to columns
                result = result.pivot(index=h3_column, columns=category_column, values=stats)
                result = result.fillna(0)
                result = result.reset_index()

                # Rename columns with category prefixes
                new_columns = [h3_column]
                for col in sorted(result.columns[1:]):
                    if col == "NaN_category":
                        new_columns.append(f"NaN_{stats}")
                    else:
                        new_columns.append(f"{col}_{stats}")
                result.columns = new_columns
            except Exception:
                # Fallback to simple count if pivot fails
                result = df.groupby(h3_column).size().reset_index(name=stats)

    # Add geometry if requested
    result = result.set_index(h3_column)
    if return_geometry:
        result = result.h3.h32geo()
    return result.reset_index()

hex_ring(k=1, explode=False)

Parameters

k : int the distance from the origin H3 id. Default k = 1 explode : bool If True, will explode the resulting list vertically. All other columns' values are copied. Default: False

Examples

df = pd.DataFrame({'val': [5, 1]}, index=['881e309739fffff', '881e2659c3fffff']) df.h3.hex_ring(1) val h3_hex_ring 881e309739fffff 5 [881e30973dfffff, 881e309703fffff, 881e309707f... 881e2659c3fffff 1 [881e2659ddfffff, 881e2659cbfffff, 881e2659d5f... df.h3.hex_ring(1, explode=True) val h3_hex_ring 881e2659c3fffff 1 881e2659ddfffff 881e2659c3fffff 1 881e2659cbfffff 881e2659c3fffff 1 881e2659d5fffff 881e2659c3fffff 1 881e2659c7fffff 881e2659c3fffff 1 881e265989fffff 881e2659c3fffff 1 881e2659c1fffff 881e309739fffff 5 881e30973dfffff 881e309739fffff 5 881e309703fffff 881e309739fffff 5 881e309707fffff 881e309739fffff 5 881e30973bfffff 881e309739fffff 5 881e309715fffff 881e309739fffff 5 881e309731fffff

Source code in vgridpandas\h3pandas\h3pandas.py
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
@doc_standard(
    "h3_hex_ring",
    "containing a list H3 ID forming a hollow hexagonal ring"
    "at a distance `k`",
)
def hex_ring(self, k: int = 1, explode: bool = False) -> AnyDataFrame:
    """
    Parameters
    ----------
    k : int
        the distance from the origin H3 id. Default k = 1
    explode : bool
        If True, will explode the resulting list vertically.
        All other columns' values are copied.
        Default: False

    Examples
    --------
    >>> df = pd.DataFrame({'val': [5, 1]},
    >>>                   index=['881e309739fffff', '881e2659c3fffff'])
    >>> df.h3.hex_ring(1)
                     val                                        h3_hex_ring
    881e309739fffff    5  [881e30973dfffff, 881e309703fffff, 881e309707f...
    881e2659c3fffff    1  [881e2659ddfffff, 881e2659cbfffff, 881e2659d5f...
    >>> df.h3.hex_ring(1, explode=True)
                     val      h3_hex_ring
    881e2659c3fffff    1  881e2659ddfffff
    881e2659c3fffff    1  881e2659cbfffff
    881e2659c3fffff    1  881e2659d5fffff
    881e2659c3fffff    1  881e2659c7fffff
    881e2659c3fffff    1  881e265989fffff
    881e2659c3fffff    1  881e2659c1fffff
    881e309739fffff    5  881e30973dfffff
    881e309739fffff    5  881e309703fffff
    881e309739fffff    5  881e309707fffff
    881e309739fffff    5  881e30973bfffff
    881e309739fffff    5  881e309715fffff
    881e309739fffff    5  881e309731fffff
    """
    func = wrapped_partial(h3.grid_ring, k=k)
    column_name = "h3_hex_ring"
    if explode:
        return self._apply_index_explode(func, column_name, list)
    return self._apply_index_assign(func, column_name, list)

k_ring(k=1, explode=False)

Parameters

k : int the distance from the origin H3 id. Default k = 1 explode : bool If True, will explode the resulting list vertically. All other columns' values are copied. Default: False

See Also

k_ring_smoothing : Extended API method that distributes numeric values to the k-ring cells

Examples

df = pd.DataFrame({'val': [5, 1]}, index=['881e309739fffff', '881e2659c3fffff']) df.h3.k_ring(1) val h3_k_ring 881e309739fffff 5 [881e30973dfffff, 881e309703fffff, 881e309707f... 881e2659c3fffff 1 [881e2659ddfffff, 881e2659c3fffff, 881e2659cbf...

df.h3.k_ring(1, explode=True) val h3_k_ring 881e2659c3fffff 1 881e2659ddfffff 881e2659c3fffff 1 881e2659c3fffff 881e2659c3fffff 1 881e2659cbfffff 881e2659c3fffff 1 881e2659d5fffff 881e2659c3fffff 1 881e2659c7fffff 881e2659c3fffff 1 881e265989fffff 881e2659c3fffff 1 881e2659c1fffff 881e309739fffff 5 881e30973dfffff 881e309739fffff 5 881e309703fffff 881e309739fffff 5 881e309707fffff 881e309739fffff 5 881e30973bfffff 881e309739fffff 5 881e309715fffff 881e309739fffff 5 881e309739fffff 881e309739fffff 5 881e309731fffff

Source code in vgridpandas\h3pandas\h3pandas.py
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
@doc_standard(
    "h3_k_ring", "containing a list H3 ID within a distance of `k`"
)
def k_ring(self, k: int = 1, explode: bool = False) -> AnyDataFrame:
    """
    Parameters
    ----------
    k : int
        the distance from the origin H3 id. Default k = 1
    explode : bool
        If True, will explode the resulting list vertically.
        All other columns' values are copied.
        Default: False

    See Also
    --------
    k_ring_smoothing : Extended API method that distributes numeric values
        to the k-ring cells

    Examples
    --------
    >>> df = pd.DataFrame({'val': [5, 1]},
    >>>                   index=['881e309739fffff', '881e2659c3fffff'])
    >>> df.h3.k_ring(1)
                     val                                          h3_k_ring
    881e309739fffff    5  [881e30973dfffff, 881e309703fffff, 881e309707f...
    881e2659c3fffff    1  [881e2659ddfffff, 881e2659c3fffff, 881e2659cbf...

    >>> df.h3.k_ring(1, explode=True)
                     val        h3_k_ring
    881e2659c3fffff    1  881e2659ddfffff
    881e2659c3fffff    1  881e2659c3fffff
    881e2659c3fffff    1  881e2659cbfffff
    881e2659c3fffff    1  881e2659d5fffff
    881e2659c3fffff    1  881e2659c7fffff
    881e2659c3fffff    1  881e265989fffff
    881e2659c3fffff    1  881e2659c1fffff
    881e309739fffff    5  881e30973dfffff
    881e309739fffff    5  881e309703fffff
    881e309739fffff    5  881e309707fffff
    881e309739fffff    5  881e30973bfffff
    881e309739fffff    5  881e309715fffff
    881e309739fffff    5  881e309739fffff
    881e309739fffff    5  881e309731fffff
    """
    func = wrapped_partial(h3.grid_disk, k=k)
    column_name = "h3_k_ring"
    if explode:
        return self._apply_index_explode(func, column_name, list)
    return self._apply_index_assign(func, column_name, list)

k_ring_smoothing(k=None, weights=None, return_geometry=True)

Experimental. Creates a k-ring around each input cell and distributes the cell's values.

The values are distributed either - uniformly (by setting k) or - by weighing their values using weights.

Only numeric columns are modified.

Parameters

k : int The distance from the origin H3 id weights : Sequence[float] Weighting of the values based on the distance from the origin. First weight corresponds to the origin. Values are be normalized to add up to 1. return_geometry: bool (Optional) Whether to add a geometry column with the hexagonal cells. Default = True

Returns

(Geo)DataFrame with smoothed values

See Also

k_ring : H3 API method upon which this method builds

Examples

df = pd.DataFrame({'val': [5, 1]}, index=['881e309739fffff', '881e2659c3fffff']) df.h3.k_ring_smoothing(1) val geometry h3_k_ring 881e265989fffff 0.142857 POLYGON ((14.99488 50.99821, 14.99260 50.99389... 881e2659c1fffff 0.142857 POLYGON ((14.97944 51.00758, 14.97717 51.00326... 881e2659c3fffff 0.142857 POLYGON ((14.99201 51.00565, 14.98973 51.00133... 881e2659c7fffff 0.142857 POLYGON ((14.98231 51.00014, 14.98004 50.99582... 881e2659cbfffff 0.142857 POLYGON ((14.98914 51.01308, 14.98687 51.00877... 881e2659d5fffff 0.142857 POLYGON ((15.00458 51.00371, 15.00230 50.99940... 881e2659ddfffff 0.142857 POLYGON ((15.00171 51.01115, 14.99943 51.00684... 881e309703fffff 0.714286 POLYGON ((13.99235 50.01119, 13.99017 50.00681... 881e309707fffff 0.714286 POLYGON ((13.98290 50.00555, 13.98072 50.00116... 881e309715fffff 0.714286 POLYGON ((14.00473 50.00932, 14.00255 50.00494... 881e309731fffff 0.714286 POLYGON ((13.99819 49.99617, 13.99602 49.99178... 881e309739fffff 0.714286 POLYGON ((13.99527 50.00368, 13.99310 49.99929... 881e30973bfffff 0.714286 POLYGON ((14.00765 50.00181, 14.00547 49.99742... 881e30973dfffff 0.714286 POLYGON ((13.98582 49.99803, 13.98364 49.99365... df.h3.k_ring_smoothing(weights=[2, 1]) val geometry h3_hex_ring 881e265989fffff 0.125 POLYGON ((14.99488 50.99821, 14.99260 50.99389... 881e2659c1fffff 0.125 POLYGON ((14.97944 51.00758, 14.97717 51.00326... 881e2659c3fffff 0.250 POLYGON ((14.99201 51.00565, 14.98973 51.00133... 881e2659c7fffff 0.125 POLYGON ((14.98231 51.00014, 14.98004 50.99582... 881e2659cbfffff 0.125 POLYGON ((14.98914 51.01308, 14.98687 51.00877... 881e2659d5fffff 0.125 POLYGON ((15.00458 51.00371, 15.00230 50.99940... 881e2659ddfffff 0.125 POLYGON ((15.00171 51.01115, 14.99943 51.00684... 881e309703fffff 0.625 POLYGON ((13.99235 50.01119, 13.99017 50.00681... 881e309707fffff 0.625 POLYGON ((13.98290 50.00555, 13.98072 50.00116... 881e309715fffff 0.625 POLYGON ((14.00473 50.00932, 14.00255 50.00494... 881e309731fffff 0.625 POLYGON ((13.99819 49.99617, 13.99602 49.99178... 881e309739fffff 1.250 POLYGON ((13.99527 50.00368, 13.99310 49.99929... 881e30973bfffff 0.625 POLYGON ((14.00765 50.00181, 14.00547 49.99742... 881e30973dfffff 0.625 POLYGON ((13.98582 49.99803, 13.98364 49.99365... df.h3.k_ring_smoothing(1, return_geometry=False) val h3_k_ring 881e265989fffff 0.142857 881e2659c1fffff 0.142857 881e2659c3fffff 0.142857 881e2659c7fffff 0.142857 881e2659cbfffff 0.142857 881e2659d5fffff 0.142857 881e2659ddfffff 0.142857 881e309703fffff 0.714286 881e309707fffff 0.714286 881e309715fffff 0.714286 881e309731fffff 0.714286 881e309739fffff 0.714286 881e30973bfffff 0.714286 881e30973dfffff 0.714286

Source code in vgridpandas\h3pandas\h3pandas.py
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
def k_ring_smoothing(
    self,
    k: int = None,
    weights: Sequence[float] = None,
    return_geometry: bool = True,
) -> AnyDataFrame:
    """Experimental. Creates a k-ring around each input cell and distributes
    the cell's values.

    The values are distributed either
     - uniformly (by setting `k`) or
     - by weighing their values using `weights`.

    Only numeric columns are modified.

    Parameters
    ----------
    k : int
        The distance from the origin H3 id
    weights : Sequence[float]
        Weighting of the values based on the distance from the origin.
        First weight corresponds to the origin.
        Values are be normalized to add up to 1.
    return_geometry: bool
        (Optional) Whether to add a `geometry` column with the hexagonal cells.
        Default = True

    Returns
    -------
    (Geo)DataFrame with smoothed values

    See Also
    --------
    k_ring : H3 API method upon which this method builds

    Examples
    --------
    >>> df = pd.DataFrame({'val': [5, 1]},
    >>>                   index=['881e309739fffff', '881e2659c3fffff'])
    >>> df.h3.k_ring_smoothing(1)
                          val                                           geometry
    h3_k_ring
    881e265989fffff  0.142857  POLYGON ((14.99488 50.99821, 14.99260 50.99389...
    881e2659c1fffff  0.142857  POLYGON ((14.97944 51.00758, 14.97717 51.00326...
    881e2659c3fffff  0.142857  POLYGON ((14.99201 51.00565, 14.98973 51.00133...
    881e2659c7fffff  0.142857  POLYGON ((14.98231 51.00014, 14.98004 50.99582...
    881e2659cbfffff  0.142857  POLYGON ((14.98914 51.01308, 14.98687 51.00877...
    881e2659d5fffff  0.142857  POLYGON ((15.00458 51.00371, 15.00230 50.99940...
    881e2659ddfffff  0.142857  POLYGON ((15.00171 51.01115, 14.99943 51.00684...
    881e309703fffff  0.714286  POLYGON ((13.99235 50.01119, 13.99017 50.00681...
    881e309707fffff  0.714286  POLYGON ((13.98290 50.00555, 13.98072 50.00116...
    881e309715fffff  0.714286  POLYGON ((14.00473 50.00932, 14.00255 50.00494...
    881e309731fffff  0.714286  POLYGON ((13.99819 49.99617, 13.99602 49.99178...
    881e309739fffff  0.714286  POLYGON ((13.99527 50.00368, 13.99310 49.99929...
    881e30973bfffff  0.714286  POLYGON ((14.00765 50.00181, 14.00547 49.99742...
    881e30973dfffff  0.714286  POLYGON ((13.98582 49.99803, 13.98364 49.99365...
    >>> df.h3.k_ring_smoothing(weights=[2, 1])
                       val                                           geometry
    h3_hex_ring
    881e265989fffff  0.125  POLYGON ((14.99488 50.99821, 14.99260 50.99389...
    881e2659c1fffff  0.125  POLYGON ((14.97944 51.00758, 14.97717 51.00326...
    881e2659c3fffff  0.250  POLYGON ((14.99201 51.00565, 14.98973 51.00133...
    881e2659c7fffff  0.125  POLYGON ((14.98231 51.00014, 14.98004 50.99582...
    881e2659cbfffff  0.125  POLYGON ((14.98914 51.01308, 14.98687 51.00877...
    881e2659d5fffff  0.125  POLYGON ((15.00458 51.00371, 15.00230 50.99940...
    881e2659ddfffff  0.125  POLYGON ((15.00171 51.01115, 14.99943 51.00684...
    881e309703fffff  0.625  POLYGON ((13.99235 50.01119, 13.99017 50.00681...
    881e309707fffff  0.625  POLYGON ((13.98290 50.00555, 13.98072 50.00116...
    881e309715fffff  0.625  POLYGON ((14.00473 50.00932, 14.00255 50.00494...
    881e309731fffff  0.625  POLYGON ((13.99819 49.99617, 13.99602 49.99178...
    881e309739fffff  1.250  POLYGON ((13.99527 50.00368, 13.99310 49.99929...
    881e30973bfffff  0.625  POLYGON ((14.00765 50.00181, 14.00547 49.99742...
    881e30973dfffff  0.625  POLYGON ((13.98582 49.99803, 13.98364 49.99365...
    >>> df.h3.k_ring_smoothing(1, return_geometry=False)
                          val
    h3_k_ring
    881e265989fffff  0.142857
    881e2659c1fffff  0.142857
    881e2659c3fffff  0.142857
    881e2659c7fffff  0.142857
    881e2659cbfffff  0.142857
    881e2659d5fffff  0.142857
    881e2659ddfffff  0.142857
    881e309703fffff  0.714286
    881e309707fffff  0.714286
    881e309715fffff  0.714286
    881e309731fffff  0.714286
    881e309739fffff  0.714286
    881e30973bfffff  0.714286
    881e30973dfffff  0.714286
    """
    # Drop geometry if present
    df = self._df.drop(columns=["geometry"], errors="ignore")

    if sum([weights is None, k is None]) != 1:
        raise ValueError("Exactly one of `k` and `weights` must be set.")

    # If weights are all equal, use the computationally simpler option
    if (weights is not None) and (len(set(weights)) == 1):
        k = len(weights) - 1
        weights = None

    # Unweighted case
    if weights is None:
        result = pd.DataFrame(
            df.h3.k_ring(k, explode=True)
            .groupby("h3_k_ring")
            .sum()
            .divide((1 + 3 * k * (k + 1)))
        )

        return result.h3.h3_to_geo_boundary() if return_geometry else result

    if len(weights) == 0:
        raise ValueError("Weights cannot be empty.")

    # Weighted case
    weights = np.array(weights)
    multipliers = np.array([1] + [i * 6 for i in range(1, len(weights))])
    weights = weights / (weights * multipliers).sum()

    # This should be exploded hex ring
    def weighted_hex_ring(df, k, normalized_weight):
        return df.h3.hex_ring(k, explode=True).h3._multiply_numeric(
            normalized_weight
        )

    result = (
        pd.concat(
            [weighted_hex_ring(df, i, weights[i]) for i in range(len(weights))]
        )
        .groupby("h3_hex_ring")
        .sum()
    )

    return result.h3.h3_to_geo_boundary() if return_geometry else result

latlon2h3(resolution, lat_col='lat', lng_col='lon', set_index=True)

Adds H3 index to (Geo)DataFrame.

pd.DataFrame: uses lat_col and lng_col (default lat and lon) gpd.GeoDataFrame: uses geometry

Assumes coordinates in epsg=4326.

Parameters

resolution : int H3 resolution lat_col : str Name of the latitude column (if used), default 'lat' lng_col : str Name of the longitude column (if used), default 'lon' set_index : bool If True, the columns with H3 ID is set as index, default 'True'

Returns

(Geo)DataFrame with H3 ID added

See Also

geo_to_h3_aggregate : Extended API method that aggregates points by H3 id

Examples

df = pd.DataFrame({'lat': [50, 51], 'lng':[14, 15]}) df.h3.geo_to_h3(8) lat lng h3 881e309739fffff 50 14 881e2659c3fffff 51 15

df.h3.geo_to_h3(8, set_index=False) lat lng h3 0 50 14 881e309739fffff 1 51 15 881e2659c3fffff

gdf = gpd.GeoDataFrame({'val': [5, 1]}, geometry=gpd.points_from_xy(x=[14, 15], y=(50, 51))) gdf.h3.geo_to_h3(8) val geometry h3 881e309739fffff 5 POINT (14.00000 50.00000) 881e2659c3fffff 1 POINT (15.00000 51.00000)

Source code in vgridpandas\h3pandas\h3pandas.py
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
def latlon2h3(
    self,
    resolution: int,
    lat_col: str = "lat",
    lng_col: str = "lon",
    set_index: bool = True,
) -> AnyDataFrame:
    """Adds H3 index to (Geo)DataFrame.

    pd.DataFrame: uses `lat_col` and `lng_col` (default `lat` and `lon`)
    gpd.GeoDataFrame: uses `geometry`

    Assumes coordinates in epsg=4326.

    Parameters
    ----------
    resolution : int
        H3 resolution
    lat_col : str
        Name of the latitude column (if used), default 'lat'
    lng_col : str
        Name of the longitude column (if used), default 'lon'
    set_index : bool
        If True, the columns with H3 ID is set as index, default 'True'

    Returns
    -------
    (Geo)DataFrame with H3 ID added

    See Also
    --------
    geo_to_h3_aggregate : Extended API method that aggregates points by H3 id

    Examples
    --------
    >>> df = pd.DataFrame({'lat': [50, 51], 'lng':[14, 15]})
    >>> df.h3.geo_to_h3(8)
                     lat  lng
    h3
    881e309739fffff   50   14
    881e2659c3fffff   51   15

    >>> df.h3.geo_to_h3(8, set_index=False)
       lat  lng            h3
    0   50   14  881e309739fffff
    1   51   15  881e2659c3fffff

    >>> gdf = gpd.GeoDataFrame({'val': [5, 1]},
    >>> geometry=gpd.points_from_xy(x=[14, 15], y=(50, 51)))
    >>> gdf.h3.geo_to_h3(8)
                     val                   geometry
    h3
    881e309739fffff    5  POINT (14.00000 50.00000)
    881e2659c3fffff    1  POINT (15.00000 51.00000)

    """
    if not isinstance(resolution, int) or resolution not in range(0, 16):
        raise ValueError("Resolution must be an integer in range [0, 15]")

    if isinstance(self._df, gpd.GeoDataFrame):
        lngs = self._df.geometry.x
        lats = self._df.geometry.y
    else:
        lngs = self._df[lng_col]
        lats = self._df[lat_col]

    h3_id = [
        h3.latlng_to_cell(lat, lng, resolution) for lat, lng in zip(lats, lngs)
    ]

    # h3_column = self._format_resolution(resolution)
    h3_column = "h3"
    assign_arg = {h3_column: h3_id, "h3_res": resolution}   
    df = self._df.assign(**assign_arg)
    if set_index:
        return df.set_index(h3_column)
    return df

linetrace(resolution, explode=False)

Experimental. An H3 cell representation of a (Multi)LineString, which permits repeated cells, but not if they are repeated in immediate sequence.

Parameters

resolution : int H3 resolution explode : bool If True, will explode the resulting list vertically. All other columns' values are copied. Default: False

Returns

(Geo)DataFrame with H3 cells with centroids within the input polygons.

Examples

from shapely.geometry import LineString gdf = gpd.GeoDataFrame(geometry=[LineString([[0, 0], [1, 0], [1, 1]])]) gdf.h3.linetrace(4) geometry h3_linetrace 0 LINESTRING (0.00000 0.00000, 1.00000 0.00000, ... [83754efffffffff, 83754cfffffffff, 837541fffff... # noqa E501 gdf.h3.linetrace(4, explode=True) geometry h3_linetrace 0 LINESTRING (0.00000 0.00000, 1.00000 0.00000, ... 83754efffffffff 0 LINESTRING (0.00000 0.00000, 1.00000 0.00000, ... 83754cfffffffff 0 LINESTRING (0.00000 0.00000, 1.00000 0.00000, ... 837541fffffffff

Source code in vgridpandas\h3pandas\h3pandas.py
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
def linetrace(self, resolution: int, explode: bool = False) -> AnyDataFrame:
    """Experimental. An H3 cell representation of a (Multi)LineString,
    which permits repeated cells, but not if they are repeated in
    immediate sequence.

    Parameters
    ----------
    resolution : int
        H3 resolution
    explode : bool
        If True, will explode the resulting list vertically.
        All other columns' values are copied.
        Default: False

    Returns
    -------
    (Geo)DataFrame with H3 cells with centroids within the input polygons.

    Examples
    --------
    >>> from shapely.geometry import LineString
    >>> gdf = gpd.GeoDataFrame(geometry=[LineString([[0, 0], [1, 0], [1, 1]])])
    >>> gdf.h3.linetrace(4)
                                                geometry                                       h3_linetrace
    0  LINESTRING (0.00000 0.00000, 1.00000 0.00000, ...  [83754efffffffff, 83754cfffffffff, 837541fffff...  # noqa E501
    >>> gdf.h3.linetrace(4, explode=True)
                                                geometry     h3_linetrace
    0  LINESTRING (0.00000 0.00000, 1.00000 0.00000, ...  83754efffffffff
    0  LINESTRING (0.00000 0.00000, 1.00000 0.00000, ...  83754cfffffffff
    0  LINESTRING (0.00000 0.00000, 1.00000 0.00000, ...  837541fffffffff

    """

    def func(row):
        return list(linetrace(row.geometry, resolution))

    df = self._df

    result = df.apply(func, axis=1)
    if not explode:
        assign_args = {COLUMN_H3_LINETRACE: result}
        return df.assign(**assign_args)

    result = result.explode().to_frame(COLUMN_H3_LINETRACE)
    return df.join(result)

polyfill(resolution, explode=False, predicate=None, compact=False)

Parameters

resolution : int H3 resolution explode : bool If True, will explode the resulting list vertically. All other columns' values are copied. Default: False predicate : str, optional Spatial predicate to apply ('intersect', 'within', 'centroid_within', 'largest_overlap') compact : bool, optional Enable H3 compact mode

Source code in vgridpandas\h3pandas\h3pandas.py
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
@doc_standard(
    "h3",
    "containing a list H3 ID whose centroid falls into the Polygon",
)
def polyfill(
    self, 
    resolution: int, 
    explode: bool = False,
    predicate: str = None,
    compact: bool = False
) -> AnyDataFrame:
    """
    Parameters
    ----------
    resolution : int
        H3 resolution
    explode : bool
        If True, will explode the resulting list vertically.
        All other columns' values are copied.
        Default: False
    predicate : str, optional
        Spatial predicate to apply ('intersect', 'within', 'centroid_within', 'largest_overlap')
    compact : bool, optional
        Enable H3 compact mode      
    """

    def func(row):
        return list(polyfill(row.geometry, resolution, predicate, compact))

    result = self._df.apply(func, axis=1)

    if not explode:
        assign_args = {"h3": result}
        return self._df.assign(**assign_args)

    result = result.explode().to_frame("h3")

    return self._df.join(result)

polyfill_resample(resolution, return_geometry=True)

Experimental. Currently essentially polyfill(..., explode=True) that sets the H3 index and adds the H3 cell geometry.

Parameters

resolution : int H3 resolution return_geometry: bool (Optional) Whether to add a geometry column with the hexagonal cells. Default = True

Returns

(Geo)DataFrame with H3 cells with centroids within the input polygons.

See Also

polyfill : H3 API method upon which this method builds

Examples

from shapely.geometry import box gdf = gpd.GeoDataFrame(geometry=[box(0, 0, 1, 1)]) gdf.h3.polyfill_resample(4) index geometry h3 84754e3ffffffff 0 POLYGON ((0.33404 -0.11975, 0.42911 0.07901, 0... 84754c7ffffffff 0 POLYGON ((0.92140 -0.03115, 1.01693 0.16862, 0... 84754c5ffffffff 0 POLYGON ((0.91569 0.33807, 1.01106 0.53747, 0.... 84754ebffffffff 0 POLYGON ((0.62438 0.10878, 0.71960 0.30787, 0.... 84754edffffffff 0 POLYGON ((0.32478 0.61394, 0.41951 0.81195, 0.... 84754e1ffffffff 0 POLYGON ((0.32940 0.24775, 0.42430 0.44615, 0.... 84754e9ffffffff 0 POLYGON ((0.61922 0.47649, 0.71427 0.67520, 0.... 8475413ffffffff 0 POLYGON ((0.91001 0.70597, 1.00521 0.90497, 0....

Source code in vgridpandas\h3pandas\h3pandas.py
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
def polyfill_resample(
    self, resolution: int, return_geometry: bool = True
) -> AnyDataFrame:
    """Experimental. Currently essentially polyfill(..., explode=True) that
    sets the H3 index and adds the H3 cell geometry.

    Parameters
    ----------
    resolution : int
        H3 resolution
    return_geometry: bool
        (Optional) Whether to add a `geometry` column with the hexagonal cells.
        Default = True

    Returns
    -------
    (Geo)DataFrame with H3 cells with centroids within the input polygons.

    See Also
    --------
    polyfill : H3 API method upon which this method builds

    Examples
    --------
    >>> from shapely.geometry import box
    >>> gdf = gpd.GeoDataFrame(geometry=[box(0, 0, 1, 1)])
    >>> gdf.h3.polyfill_resample(4)
                     index                                           geometry
    h3
    84754e3ffffffff      0  POLYGON ((0.33404 -0.11975, 0.42911 0.07901, 0...
    84754c7ffffffff      0  POLYGON ((0.92140 -0.03115, 1.01693 0.16862, 0...
    84754c5ffffffff      0  POLYGON ((0.91569 0.33807, 1.01106 0.53747, 0....
    84754ebffffffff      0  POLYGON ((0.62438 0.10878, 0.71960 0.30787, 0....
    84754edffffffff      0  POLYGON ((0.32478 0.61394, 0.41951 0.81195, 0....
    84754e1ffffffff      0  POLYGON ((0.32940 0.24775, 0.42430 0.44615, 0....
    84754e9ffffffff      0  POLYGON ((0.61922 0.47649, 0.71427 0.67520, 0....
    8475413ffffffff      0  POLYGON ((0.91001 0.70597, 1.00521 0.90497, 0....
    """
    result = self._df.h3.polyfill(resolution, explode=True)
    uncovered_rows = result[COLUMN_H3_POLYFILL].isna()
    n_uncovered_rows = uncovered_rows.sum()
    if n_uncovered_rows > 0:
        warnings.warn(
            f"{n_uncovered_rows} rows did not generate a H3 cell."
            "Consider using a finer resolution."
        )
        result = result.loc[~uncovered_rows]

    result = result.reset_index().set_index(COLUMN_H3_POLYFILL)

    return result.h3.h3_to_geo_boundary() if return_geometry else result