01 h3
H3Pandas key features¶
You can try out vgridpandas by using the cloud-computing platforms below without having to install anything on your computer:
Full VgridPandas DGGS documentation is available at vgridpandas document.
To work with Vgrid in Python or CLI, use vgrid package. Full Vgrid DGGS documentation is available at vgrid document.
To work with Vgrid DGGS in QGIS, install the Vgrid Plugin.
To visualize DGGS in Maplibre GL JS, try the vgrid-maplibre library.
For an interactive demo, visit the Vgrid Homepage.
Install vgridpandas¶
Uncomment the following line to install vgridpandas.
In [1]:
Copied!
# %pip install vgridpandas
# %pip install vgridpandas
Latlon to H3¶
In [2]:
Copied!
import pandas as pd
from vgridpandas import h3pandas
df = pd.read_csv('https://github.com/uber-web/kepler.gl-data/raw/master/nyctrips/data.csv')
df = df.rename({'pickup_longitude': 'lon', 'pickup_latitude': 'lat'}, axis=1)[['lon', 'lat', 'passenger_count']]
df = df.head(100)
resolution = 8
df = df.h3.latlon2h3(resolution)
df.head()
import pandas as pd
from vgridpandas import h3pandas
df = pd.read_csv('https://github.com/uber-web/kepler.gl-data/raw/master/nyctrips/data.csv')
df = df.rename({'pickup_longitude': 'lon', 'pickup_latitude': 'lat'}, axis=1)[['lon', 'lat', 'passenger_count']]
df = df.head(100)
resolution = 8
df = df.h3.latlon2h3(resolution)
df.head()
Out[2]:
| lon | lat | passenger_count | h3 | h3_res | |
|---|---|---|---|---|---|
| 0 | -73.993896 | 40.750111 | 1 | 882a100d2dfffff | 8 |
| 1 | -73.976425 | 40.739811 | 1 | 882a100d2bfffff | 8 |
| 2 | -73.968704 | 40.754246 | 5 | 882a100d63fffff | 8 |
| 3 | -73.863060 | 40.769581 | 5 | 882a100e25fffff | 8 |
| 4 | -73.945541 | 40.779423 | 1 | 882a10089bfffff | 8 |
H3 to geo boundary¶
In [3]:
Copied!
df = df.h3.h32geo()
df.head()
df = df.h3.h32geo()
df.head()
Out[3]:
| lon | lat | passenger_count | h3 | h3_res | geometry | |
|---|---|---|---|---|---|---|
| 0 | -73.993896 | 40.750111 | 1 | 882a100d2dfffff | 8 | POLYGON ((-73.98804 40.75427, -73.99442 40.753... |
| 1 | -73.976425 | 40.739811 | 1 | 882a100d2bfffff | 8 | POLYGON ((-73.9748 40.74405, -73.98118 40.743,... |
| 2 | -73.968704 | 40.754246 | 5 | 882a100d63fffff | 8 | POLYGON ((-73.9689 40.75743, -73.97528 40.7563... |
| 3 | -73.863060 | 40.769581 | 5 | 882a100e25fffff | 8 | POLYGON ((-73.86237 40.77082, -73.86875 40.769... |
| 4 | -73.945541 | 40.779423 | 1 | 882a10089bfffff | 8 | POLYGON ((-73.94629 40.78183, -73.95267 40.780... |
(Multi)Linestring/ (Multi)Polygon to H3¶
In [4]:
Copied!
import geopandas as gpd
gdf = gpd.read_file('https://raw.githubusercontent.com/opengeoshub/vopendata/refs/heads/main/shape/polygon.geojson')
resolution = 10
gdf_polyfill = gdf.h3.polyfill(resolution, compact = True, predicate = "largest_overlap", explode = True)
gdf_polyfill.head()
gdf_polyfill = gdf_polyfill.h3.h32geo("h3")
gdf_polyfill.plot(edgecolor = "white")
import geopandas as gpd
gdf = gpd.read_file('https://raw.githubusercontent.com/opengeoshub/vopendata/refs/heads/main/shape/polygon.geojson')
resolution = 10
gdf_polyfill = gdf.h3.polyfill(resolution, compact = True, predicate = "largest_overlap", explode = True)
gdf_polyfill.head()
gdf_polyfill = gdf_polyfill.h3.h32geo("h3")
gdf_polyfill.plot(edgecolor = "white")
Out[4]:
<Axes: >
H3 point binning¶
In [5]:
Copied!
import pandas as pd
resolution = 10
df = pd.read_csv("https://raw.githubusercontent.com/opengeoshub/vopendata/refs/heads/main/csv/dist1_pois.csv")
# df = gpd.read_file("https://raw.githubusercontent.com/opengeoshub/vopendata/refs/heads/main/shape/dist1_pois.geojson")
df.head()
stats = "count"
df_bin = df.h3.h3bin(resolution=resolution, stats = stats,
# numeric_column="confidence",
# category_column="category",
return_geometry=True)
df_bin.plot(
column=stats, # numeric column to base the colors on
cmap='Spectral_r', # color scheme (matplotlib colormap)
legend=True,
linewidth=0.2 # boundary width (optional)
)
import pandas as pd
resolution = 10
df = pd.read_csv("https://raw.githubusercontent.com/opengeoshub/vopendata/refs/heads/main/csv/dist1_pois.csv")
# df = gpd.read_file("https://raw.githubusercontent.com/opengeoshub/vopendata/refs/heads/main/shape/dist1_pois.geojson")
df.head()
stats = "count"
df_bin = df.h3.h3bin(resolution=resolution, stats = stats,
# numeric_column="confidence",
# category_column="category",
return_geometry=True)
df_bin.plot(
column=stats, # numeric column to base the colors on
cmap='Spectral_r', # color scheme (matplotlib colormap)
legend=True,
linewidth=0.2 # boundary width (optional)
)
Out[5]:
<Axes: >