12 geohash
GeohashPandas key features¶
You can try out vgridpandas by using the cloud-computing platforms below without having to install anything on your computer:
Full VgridPandas DGGS documentation is available at vgridpandas document.
To work with Vgrid in Python or CLI, use vgrid package. Full Vgrid DGGS documentation is available at vgrid document.
To work with Vgrid DGGS in QGIS, install the Vgrid Plugin.
To visualize DGGS in Maplibre GL JS, try the vgrid-maplibre library.
For an interactive demo, visit the Vgrid Homepage.
Install vgridpandas¶
Uncomment the following line to install vgridpandas.
In [1]:
Copied!
# %pip install vgridpandas
# %pip install vgridpandas
Latlon to Geohash¶
In [2]:
Copied!
import pandas as pd
from vgridpandas import geohashpandas
df = pd.read_csv('https://github.com/uber-web/kepler.gl-data/raw/master/nyctrips/data.csv')
df = df.head(100)
df = df.rename({'pickup_longitude': 'lon', 'pickup_latitude': 'lat'}, axis=1)[['lon', 'lat', 'passenger_count']]
resolution = 2
df = df.geohash.latlon2geohash(resolution)
df.head()
import pandas as pd
from vgridpandas import geohashpandas
df = pd.read_csv('https://github.com/uber-web/kepler.gl-data/raw/master/nyctrips/data.csv')
df = df.head(100)
df = df.rename({'pickup_longitude': 'lon', 'pickup_latitude': 'lat'}, axis=1)[['lon', 'lat', 'passenger_count']]
resolution = 2
df = df.geohash.latlon2geohash(resolution)
df.head()
Out[2]:
| lon | lat | passenger_count | geohash | geohash_res | |
|---|---|---|---|---|---|
| 0 | -73.993896 | 40.750111 | 1 | dr | 2 |
| 1 | -73.976425 | 40.739811 | 1 | dr | 2 |
| 2 | -73.968704 | 40.754246 | 5 | dr | 2 |
| 3 | -73.863060 | 40.769581 | 5 | dr | 2 |
| 4 | -73.945541 | 40.779423 | 1 | dr | 2 |
Geohash to geo boundary¶
In [3]:
Copied!
df = df.geohash.geohash2geo()
df.head()
df = df.geohash.geohash2geo()
df.head()
Out[3]:
| lon | lat | passenger_count | geohash | geohash_res | geometry | |
|---|---|---|---|---|---|---|
| 0 | -73.993896 | 40.750111 | 1 | dr | 2 | POLYGON ((-78.75 39.375, -67.5 39.375, -67.5 4... |
| 1 | -73.976425 | 40.739811 | 1 | dr | 2 | POLYGON ((-78.75 39.375, -67.5 39.375, -67.5 4... |
| 2 | -73.968704 | 40.754246 | 5 | dr | 2 | POLYGON ((-78.75 39.375, -67.5 39.375, -67.5 4... |
| 3 | -73.863060 | 40.769581 | 5 | dr | 2 | POLYGON ((-78.75 39.375, -67.5 39.375, -67.5 4... |
| 4 | -73.945541 | 40.779423 | 1 | dr | 2 | POLYGON ((-78.75 39.375, -67.5 39.375, -67.5 4... |
(Multi)Linestring/ (Multi)Polygon to Geohash¶
In [6]:
Copied!
import geopandas as gpd
from vgridpandas import geohashpandas
gdf = gpd.read_file('https://raw.githubusercontent.com/opengeoshub/vopendata/refs/heads/main/shape/polygon.geojson')
resolution = 8
gdf_polyfill = gdf.geohash.polyfill(resolution, predicate = "intersects", compact = True)
gdf_polyfill = gdf_polyfill.geohash.geohash2geo()
gdf_polyfill.plot(edgecolor = "white")
import geopandas as gpd
from vgridpandas import geohashpandas
gdf = gpd.read_file('https://raw.githubusercontent.com/opengeoshub/vopendata/refs/heads/main/shape/polygon.geojson')
resolution = 8
gdf_polyfill = gdf.geohash.polyfill(resolution, predicate = "intersects", compact = True)
gdf_polyfill = gdf_polyfill.geohash.geohash2geo()
gdf_polyfill.plot(edgecolor = "white")
Out[6]:
<Axes: >
Geohash point binning¶
In [7]:
Copied!
import geopandas as gpd
from vgridpandas import geohashpandas
# df = pd.read_csv("https://raw.githubusercontent.com/opengeoshub/vopendata/refs/heads/main/csv/dist1_pois.csv")
df = gpd.read_file("https://raw.githubusercontent.com/opengeoshub/vopendata/refs/heads/main/shape/dist1_pois.geojson")
resolution = 7
stats = "count"
df_bin = df.geohash.geohashbin(resolution=resolution, stats = stats,
# numeric_column="confidence",
# category_column="category",
return_geometry=True)
df_bin.plot(
column=stats, # numeric column to base the colors on
cmap='Spectral_r', # color scheme (matplotlib colormap)
legend=True,
linewidth=0.2 # boundary width (optional)
)
import geopandas as gpd
from vgridpandas import geohashpandas
# df = pd.read_csv("https://raw.githubusercontent.com/opengeoshub/vopendata/refs/heads/main/csv/dist1_pois.csv")
df = gpd.read_file("https://raw.githubusercontent.com/opengeoshub/vopendata/refs/heads/main/shape/dist1_pois.geojson")
resolution = 7
stats = "count"
df_bin = df.geohash.geohashbin(resolution=resolution, stats = stats,
# numeric_column="confidence",
# category_column="category",
return_geometry=True)
df_bin.plot(
column=stats, # numeric column to base the colors on
cmap='Spectral_r', # color scheme (matplotlib colormap)
legend=True,
linewidth=0.2 # boundary width (optional)
)
Out[7]:
<Axes: >