17 maidenhead
MaidenheadPandas key features¶
You can try out vgridpandas by using the cloud-computing platforms below without having to install anything on your computer:
Full VgridPandas DGGS documentation is available at vgridpandas document.
To work with Vgrid in Python or CLI, use vgrid package. Full Vgrid DGGS documentation is available at vgrid document.
To work with Vgrid DGGS in QGIS, install the Vgrid Plugin.
To visualize DGGS in Maplibre GL JS, try the vgrid-maplibre library.
For an interactive demo, visit the Vgrid Homepage.
Install vgridpandas¶
Uncomment the following line to install vgridpandas.
In [1]:
Copied!
# %pip install vgridpandas
# %pip install vgridpandas
Latlon to Maidenhead¶
In [2]:
Copied!
import pandas as pd
from vgridpandas import maidenheadpandas
df = pd.read_csv('https://github.com/uber-web/kepler.gl-data/raw/master/nyctrips/data.csv')
df = df.head(100)
df = df.rename({'pickup_longitude': 'lon', 'pickup_latitude': 'lat'}, axis=1)[['lon', 'lat', 'passenger_count']]
resolution = 3
df = df.maidenhead.latlon2maidenhead(resolution)
df.head()
import pandas as pd
from vgridpandas import maidenheadpandas
df = pd.read_csv('https://github.com/uber-web/kepler.gl-data/raw/master/nyctrips/data.csv')
df = df.head(100)
df = df.rename({'pickup_longitude': 'lon', 'pickup_latitude': 'lat'}, axis=1)[['lon', 'lat', 'passenger_count']]
resolution = 3
df = df.maidenhead.latlon2maidenhead(resolution)
df.head()
Out[2]:
| lon | lat | passenger_count | maidenhead | maidenhead_res | |
|---|---|---|---|---|---|
| 0 | -73.993896 | 40.750111 | 1 | FN30as | 3 |
| 1 | -73.976425 | 40.739811 | 1 | FN30ar | 3 |
| 2 | -73.968704 | 40.754246 | 5 | FN30as | 3 |
| 3 | -73.863060 | 40.769581 | 5 | FN30bs | 3 |
| 4 | -73.945541 | 40.779423 | 1 | FN30as | 3 |
Maidenhead to geo boundary¶
In [3]:
Copied!
df = df.maidenhead.maidenhead2geo()
df
df = df.maidenhead.maidenhead2geo()
df
Out[3]:
| lon | lat | passenger_count | maidenhead | maidenhead_res | geometry | |
|---|---|---|---|---|---|---|
| 0 | -73.993896 | 40.750111 | 1 | FN30as | 3 | POLYGON ((-74 40.75, -73.91667 40.75, -73.9166... |
| 1 | -73.976425 | 40.739811 | 1 | FN30ar | 3 | POLYGON ((-74 40.70833, -73.91667 40.70833, -7... |
| 2 | -73.968704 | 40.754246 | 5 | FN30as | 3 | POLYGON ((-74 40.75, -73.91667 40.75, -73.9166... |
| 3 | -73.863060 | 40.769581 | 5 | FN30bs | 3 | POLYGON ((-73.91667 40.75, -73.83333 40.75, -7... |
| 4 | -73.945541 | 40.779423 | 1 | FN30as | 3 | POLYGON ((-74 40.75, -73.91667 40.75, -73.9166... |
| ... | ... | ... | ... | ... | ... | ... |
| 95 | -73.866035 | 40.770744 | 1 | FN30bs | 3 | POLYGON ((-73.91667 40.75, -73.83333 40.75, -7... |
| 96 | -73.994415 | 40.724907 | 1 | FN30ar | 3 | POLYGON ((-74 40.70833, -73.91667 40.70833, -7... |
| 97 | -73.994217 | 40.734909 | 1 | FN30ar | 3 | POLYGON ((-74 40.70833, -73.91667 40.70833, -7... |
| 98 | -74.014938 | 40.710232 | 1 | FN20xr | 3 | POLYGON ((-74.08333 40.70833, -74 40.70833, -7... |
| 99 | -73.998070 | 40.735664 | 1 | FN30ar | 3 | POLYGON ((-74 40.70833, -73.91667 40.70833, -7... |
100 rows × 6 columns
Maidenhead point binning¶
In [4]:
Copied!
from vgridpandas import maidenheadpandas
import geopandas as gpd
# df = pd.read_csv("https://raw.githubusercontent.com/opengeoshub/vopendata/refs/heads/main/csv/dist1_pois.csv")
df = gpd.read_file("https://raw.githubusercontent.com/opengeoshub/vopendata/refs/heads/main/shape/dist1_pois.geojson")
resolution = 4
stats = "count"
df_bin = df.maidenhead.maidenheadbin(resolution=resolution, stats = stats,
# numeric_column="confidence",
# category_column="category",
return_geometry=True)
df_bin.plot(
column=stats, # numeric column to base the colors on
cmap='Spectral_r', # color scheme (matplotlib colormap)
legend=True,
linewidth=0.2 # boundary width (optional)
)
from vgridpandas import maidenheadpandas
import geopandas as gpd
# df = pd.read_csv("https://raw.githubusercontent.com/opengeoshub/vopendata/refs/heads/main/csv/dist1_pois.csv")
df = gpd.read_file("https://raw.githubusercontent.com/opengeoshub/vopendata/refs/heads/main/shape/dist1_pois.geojson")
resolution = 4
stats = "count"
df_bin = df.maidenhead.maidenheadbin(resolution=resolution, stats = stats,
# numeric_column="confidence",
# category_column="category",
return_geometry=True)
df_bin.plot(
column=stats, # numeric column to base the colors on
cmap='Spectral_r', # color scheme (matplotlib colormap)
legend=True,
linewidth=0.2 # boundary width (optional)
)
Out[4]:
<Axes: >